Как работать с эхолотом: Как работает эхолот ⋆ Принцип работы ⋆ Что такое эхолот ⋆ Функции

Как работает эхолот ⋆ Принцип работы ⋆ Что такое эхолот ⋆ Функции

Главная страница ✦ Эхолоты ✦ Как работает эхолот

В самых простых словах: электрический Sonar2импульс от передатчика преобразуется в звуковую волну в датчике(трансдьюсер) и передается в воду. Когда волна попадает на объект (рыбу, дно, дерево и т.д.) она отражается. Отраженная волна снова попадает в преобразователь, где она трансформируется в электрический сигнал, обрабатывается по заданному алгоритму, и посылается на дисплей. Так как скорость звука в воде постоянна (приблизительно 1440 метров в секунду), промежуток времени между отправкой сигнала и получением эха может быть измерен и по этим данным расстояние до объекта может быть определено. Этот процесс повторяется многократно в течение секунды. Наиболее часто используемая частота волны составляет 200 кГц, также иногда производятся приборы на частоте 83 кГц. Хотя эти частоты находятся в диапазоне ближе к звуковым частотам, они неслышны ни людям, ни рыбе. Как упомянуто ранее, эхолот посылает и принимает сигналы, затем «печатает» эхо на дисплей. Так как это случается много раз в секунду, непрерывная линия идущая поперек дисплея, показывает рисунок дна. Кроме того, на экране отображается сигнал, возвращенный от любого объекта в воде между поверхностью и дном. Зная скорость звука в воде и время, которое требуется для возвращения эха, прибор может показывать глубину и нахождение любой рыбы в воде.

 

⛵ Возможности эхолота

 

Хороший эхолот обладает четырьмя важными характеристиками:

1) Мощный передатчик.

2) Эффективный преобразователь (датчик).

3) Чувствительный приемник.

4) Дисплей высокого разрешения. Power

Все части этой системы должны быть разработаны так, чтобы работать вместе, при любых погодных условиях и критических температурах. Высокая мощность передатчика увеличивает вероятность, что Вы получите эхо на глубоководье или в плохих водных условиях. Это также позволяет Вам видеть мелкие подробности, типа мальков и мелкой структуры дна. Преобразователь не должен только проводить мощный сигнал от передатчика, он также должен преобразовать электрический сигнал в звуковую энергию с наименьшей потерей в мощности сигнала. С другой стороны, он должен чувствовать самое малое эхо от малька или сигнал дна с глубоководья. Приемник имеет дело с чрезвычайно широким диапазоном сигналов. Он должен отличить максимально сильный передаваемый сигнал и слабое эхо, пришедшее от преобразователя. Кроме того, он должен различить объекты находящиеся близко друг к другу, превратив их в разные импульсы для дисплея. Дисплей должен иметь высокое разрешение (вертикальные пиксели) и хороший контраст, чтобы показывать подводный мир детально и четко. Это позволяет видеть мелкую рыбу и подробности дна.

 

🚤  Частота импульсов

Большинство современных Частотаэхолотов оперирует на частоте 200 кГц, некоторые используют 83 кГц. Есть свои преимущества у каждой частоты, но почти для всех состояний пресной воды и большинства состояний соленой воды, 200 кГц — лучший выбор. Эта частота дает лучшие подробности, работает лучше всего в неглубокой воде и на скорости, и обычно дает меньшее количество «шумовых» и нежелательных отражений. Определение близлежащих подводных объектов, также лучше на частоте 200 кГц. Это способность отобразить две рыбы как два отдельных эха вместо одной «капли» на экране.

Существуют некоторые условия, при которых частота 83 кГц лучше. Как правило, эхолоты, работающие на частоте 83 кГц (при тех же самых условиях и мощности) может проникать более глубоко через воду. Это происходит из-за естественной способности воды поглощать звуковые волны. Скорость поглощения больше для более высоких частот звука, чем для более низких частот. Поэтому 83 кГц эхолоты находят использование в более глубокой соленой воде. Также, преобразователи 83 кГц эхолотов имеют более широкие углы обзора, чем преобразователи 200 кГц эхолотов.

Пример: различие между 200 кГц и 83 кГц:

200 kHz 83 kHz
Малые глубины Большие глубины
Узкий конический угол Широкий конический угол
Лучшее определение и разделение целей Худшее определение и разделение целей
Меньшая чувствительность к помехам Большая чувствительность к помехам

 

🐠  Как формируется дуга рыбы

Причина, по которой рыба отображается, как дуга на экране эхолота заключается в относительном движении между рыбой и Дугаконическим углом преобразователя при проходе лодки над рыбой. Длина дуги на экране, от одного ее конца до другого — не имеет к размеру рыбы никакого отношения, а всего лишь обозначает время нахождения рыбы в конусе излучаемого акустического сигнала. Как только ведущая кромка конуса попадает на рыбу, пиксель отображается на экране эхолота. Поскольку лодка движется над рыбой, расстояние до нее уменьшается. Это ведет к тому, что каждый следующий пиксель отображается на экране выше предыдущего. Когда центр конуса находится непосредственно над рыбой, первая половина дуги сформирована. Это место — кратчайшее расстояние до рыбы. Так как рыба ближе к лодке, сигнал более сильный, и эта часть дуги самая толстая. Когда лодка уходит от рыбы, расстояние увеличивается и пиксели появляются более глубоко, пока рыба не уйдет из конуса. Если рыба не проходит непосредственно через центр конуса, дуга не будет отображена. Так как рыба находится в конусе не очень долго, не так много пикселей отображают ее на экране, а те что есть, более слабые. Это одна из причин, по которые трудно показать дуги рыбы у поверхности воды. Конический угол слишком узкий для получения дуги.

Это интересно: Рыбы создают одни из наиболее интересных и удивительных эхо-сигналов, какие только бывают. Вы наверняка слышали, что от плавательного пузыря в теле рыбы отражается эхо-сигнал, который в виде метки виден на экране эхолота. Это, правда, поскольку так и есть, но многие виды рыб не имеют плавательного пузыря, и, тем не менее, они также видны на экране эхолота! Как и мы, рыбы в основном состоят из воды, так что от эха было бы мало пользы. Но на теле рыбы есть чешуя, скелет и другие части тела, плотность которых больше плотности воды. Хотя от плавательного пузыря звуковой импульс отражается, наверное, лучше всего, но другие части тела рыбы также вполне способны стать причиной эхо-сигнала.

Помните, необходимо движение между лодкой и рыбой, чтобы была видна дуга. Для этого необходимо двигаться на медленной скорости. Если Вы остановились, то рыбы не будут отображаться арками. Вместо этого они будут видны как горизонтальные строки, поскольку они плавают внутри конуса преобразователя.

 

Исследование состояния воды и дна

Под этими словами подразумевается получение Мягкое дноданных об особенностях состояния воды и плотности дна, а Жесткое днотакже получение данных о температуре воды. Для определения температуры используются специальные датчики, которые могут поставляться отдельно, а могут быть совмещены с преобразователем, то есть основным датчиком эхолота. К большинству эхолотов подключается датчик измерения скорости. Обычно он используется для измерения скорости лодки относительно воды, для определения оптимальной скорости для рыбалки, допустим, при ловле на «дорожку». Также для рыбаков полезными будут данные о скорости течения воды при стоянке на якоре. Анализируя полученные данные о скорости движения лодки, можно получить информацию о пройденном пути. При детальном анализе информации, полученной при помощи эхолота, можно определить, где находится термоклин — слой воды с низким содержанием кислорода, который образуется в стоячей воде при высоких температурах.

 

Каким образом определяется плотность и структура дна?

Это вторая, пожалуй, самая важная функция эхолота, позволяющая получать изображение контура дна — бровки, бугры и прочие изменения рельефа, представляющие интерес при поиске рыбы. Одной из ошибок рыболовов является представление, что на экране эхолота изображён тот участок, что охвачен лучом в момент времени, когда мы смотрим на экран. Но «картинка» на экране это всего лишь развёрнутая во времени история прохождения луча и её вполне можно сравнить с изображением луча на экране осциллографа — луч эхолота отражает на дисплее события во временном масштабе. Чем позже произошло событие, тем его изображение ближе к левому краю дисплея. Понятно, что событием в данном случае мы называем фрагмент изображения. Ряд событий и есть «картинка» на экране — прорисовка линии дна, объектов в воде, изображение изменения плотности воды (термоклин) и т.д. Сигнал луча эхолота по-разному отражается с разных видов донной поверхности. Например, сигнал, отраженный от илистого дна будет более рассеянный, нежели аналогичный сигнал, отраженный от жесткой поверхности. Поэтому илистое дно будет выглядеть на экране эхолота размытым и нечетким. А если дно жесткое, то на дисплее оно будет отображено насыщенным темным цветом без размытых краев.

⚓ Изображение объектов в воде, поиск рыбы.

Как бы парадоксально это ни звучало, но отображение символов рыбы на экране — это, скорее, Изображение на дисплеевторостепенная функция эхолота. Человек, увлекающийся рыбной ловлей, без проблем проанализирует данные эхолота, такие, как температура воды, глубина и структура дна, и на основе этих данных сделает вывод о возможном наличии рыбы на том или ином участке водоема. Когда на экране появляется графический символ рыбы или дуга, это значит, что луч эхолота несколько секунд назад прошел над местом, где он обнаружил объект, распознанный им, как рыба. При этом для того, чтобы эхолот просигнализировал о возможном наличии рыбы необходимо, чтобы она попала в центр луча. Мы уже говорили о том, что изображение экрана — это отображение происходящего под водой с учетом временной проекции. Аналогичная ситуация происходит во время обнаружения рыбы. Наиболее четкое изображение рыбы появляется на экране, когда рыба находится в центре луча. При этом не будем забывать, что и лодка, и рыба не стоят на месте, а движутся относительно друг друга. Если лодка идет на большой скорости на мелководье, а луч эхолота узкий, то шанс того, что эхолот зафиксирует появление рыбы в луче, крайне невелик. Да и к тому же, вряд ли рыба будет и дальше оставаться на месте, заметив лодку. На большой скорости также возможно появление на экране эхолота непрерывной черты, что говорит о том, что эхолот не успевает обрабатывать данные, полученные на такой скорости. Для того, На дисплеечтобы информация о наличии рыбы, которая отображается на экране и реальность максимально совпадали, необходимо настроить чувствительность эхолота и скорость прокрутки экрана. Оптимальные значения для этих параметров устанавливаются исключительно опытным путем. Также желательно установить режим увеличения исследуемого участка (ZOOM). В этом случае информация на экране будет наиболее приближенной к действительности. Когда все параметры эхолота выставлены верно, мы увидим на дисплее дугу или символ рыбы. Значит ли это, что под лодкой действительно находится рыба? С вероятностью 80%- да. Однако бывает и так, что символом рыбы отображается проплывающая под водой коряга или иной предмет, очертаниями похожий на рыбу. Как в этом случае определить, действительно ли в поле луча эхолота попала рыба, а не посторонний предмет? Эхолот дает нам пищу для размышлений, а выводы мы делаем сами, основываясь на знаниях о повадках рыб и местах их обитания. Например, дуга возле донной коряги на глубине может оказаться судаком, а появление большого пятна на экране в углублении на фоне ровного дна, с большой вероятностью можно назвать стаей «бели» — некрупной густеры или плотвы. Конечно, однозначных выводов в любом случае делать не стоит, но места предположительного обнаружения рыбы в любом случае можно считать перспективными для ловли. То есть, рыбалка с эхолотом состоит из следующих важных факторов: анализ рельефа дна или наличие привлекательных для рыбы объектов на дне, и наличие символов рыбы на экране. И если одиночные экземпляры рыбы могут иногда отображаться некорректно, то обнаружение стаи крупных рыб практически всегда протекает без осложнений.

🐳  Виды эхолотов.

В основном все эхолоты делятся на однолучевые и многолучевые. Невозможно сказать однозначно, что лучше — один луч или несколькоТипы эхолотов. Это все определяется индивидуальными запросами рыбака и особенностей ловли. Как уже было сказано выше, один неширокий луч дает четкое отображение структуры дна и подводных объектов, но при этом имеет не очень широкий угол обзора. Дополнительные же лучи эхолота не дает настолько четкого и детального изображения, но при этом позволяют наблюдать за объектами, которые находятся в верхнем и среднем слое воды. Например трехлучевой эхолот 200/455 кГц, формирует три луча, с общим углом покрытия 90 градусов: 20° центральный (200 кГц) и два боковых по 35° (455 кГц). Лучи эхолота выстроены в ряд — центральный луч отображает дно, боковые повышают обзорные свойства эхолота, что позволяет рыболову наиболее четко видеть, с какой стороны от лодки находится рыба. Данная система позволит получить наиболее подробную информацию о происходящем под водой, поскольку узкий луч (20°) проникает глубоко в воду, в то время как широкие лучи (35°) охватывают обширную площадь под лодкой.

Отдельная категория многолучевых Многолучевые эхолотыэхолотов — это шестилучевые модели, которые позволяют генерировать трехмерную проекцию изображения. Однако такие эхолоты часто искажают полученную информацию, и потому требуют хороших технических навыков при настройке перед использованием. Самой популярной моделью является Humminbird Matrix 47 3D.

Технологии обработки и изображения эхо-сигнала.

Принцип работы эхолота заключается в том, что прибор обрабатывает и автоматически управляет такими параметрами, как скорость обновления, чувствительность, синхронизация работы передатчика и приемника. При этом условия эхолокации постоянно изменяются. Некоторые эхолоты позволяют вручную менять основные настройки. Это очень удобно для тех, кто предпочитает от начала до конца участвовать в процессе рыбаки и непосредственно эхолокации.

🚤  Как ведет себя эхолот на скорости.

Прежде всего надо отметить, что эхолот не предназначен для обнаружения рыбы на больших скоростях ! Поэтому на скорости большей, чем 60 км/час дуги рыб и изображения рельефа будут отображаться крайне некорректно. На такой скорости можно получать общую информацию о структуре дна. Что мешает корректной обработке сигнала на высокой скорости? В первую очередь это кавитация, то есть создание пузырьков воздуха вследствие турбулентности водяного потока при работе двигателя. В ряде случаев избежать пагубного воздействия кавитации помогает установка датчика не на транец, а на специальный держатель, который опускает датчик на большую глубину, чем, нежели он находился бы на транце.

Использование эхолота на зимней рыбалке.

Ряд эхолотов имеет возможность подключения дополнительного датчика, который может «просматривать» дно сквозь лед. Однако Зимний эхолотздесь есть свои подводные камни. Не всегда можно использовать датчик, который «бьет» через лед. Точнее, его можно использовать только в одном случае: если это первый лед и в нем нет пузырьков воздуха. Любое наличие воздуха в толще льда повлечет за собой искажение изображения. Как мы уже выяснили, для того, чтобы эхолот отображал сведения о глубине и структуре дна, необходимо, чтобы датчик находился в движении. Опуская датчик в лунку, мы ограничиваем его движение и, следовательно, теряем возможность видеть детали структуры дна. Обычные эхолоты для зимней рыбалки, не очень подходят, т.к. есть один недостаток — при изучении дна неподвижно, с помощью такого аппарата, дно как бы «плывет». Для зимней рыбалки, лучше использовать эхолот-флешер. Его главное достоинство — статичность дна. Флешеры способны в режиме реального времени практически мгновенно отображать все, что происходит под лункой. При этом есть возможность одновременного отображения рыбы и приманки. Встроенным флешером обладают модели Humminbird от 596 и выше.

Что может отобразить эхолот на зимней рыбалке?

MarCum SHOWDOWN TROLLER

Ремонт MarCum SHOWDOWN TROLLER

Во- первых, данные о составе дна. Во- вторых, данные о температуре воды. И, в третьих, мы можем получить данные о возможном местонахождении рыбы. Хоть датчик эхолота и находится в неподвижном положении, но рыба так или иначе находится в движении, поэтому на зимней рыбалке мы так же будем видеть отображение дуг и символов рыбы на экране эхолота. Для того, чтобы улучшить качество изображения на экране эхолота во время зимней рыбалки, необходимо установить низкую скорость обновления экрана, тогда объект, находящийся в воде в движении, будет виден гораздо четче. При этом в случае, если на экране появляется сплошная темная полоса, это может значить, что под водой довольная плотная стая рыб.

 

На что стоит обратить внимание при выборе зимнего эхолота:

  1. Время автономной работы (в холоде, емкость аккумулятора падает)
  2. Простота настроек
  3. Тип экрана
  4. Габариты
  5. Вес

Эхолоты Smartcast

Эхолот Smartcast

Ремонт Эхолотов Smartcast

Лебёдка Minn Kota DECKHAND DH 40

Ремонт Minn Kota DECKHAND DH 40

Современные эхолоты позволяют исследовать дно и подводные объекты с берега,Smartcast используя беспроводные датчики. Это удобно для тех, кто, помимо рыбалки с лодки, любит рыбачить с берега. Такие эхолоты очень компактные и могут устанавливаться на удочку, или в виде наручных часов. Например уникальная модель Smartcast RF35е — беспроводной рыбопоисковой эхолот, выполненный в виде наручных часов. Датчик можно использовать стационарно или в движении, при этом на дисплее будет отображаться изображение Smartcastтой зоны, над которой проплывает датчик. Эхолоты Smartcast RF35е идеально подходят для изучения дна на большом расстоянии и для ловли рыбы с берега. Прибор выдает сигнал обнаружения рыбы, а максимальная глубина обнаружения составляет 35 м. Датчик работает от замыкания двух контактов, что продлевает срок службы батареи.

Эти модели нельзя использовать как зимние эхолоты, так как они выходят из строя при температуре ниже нуля !

Практические выводы: Эхолот с большим углом обзора и низкой частотой излучения дает возможность быстро прочесать большие пространства. Это полезно при обследовании совершенно незнакомого места. Эхолот с высокой частотой излучения и малым углом обзора дает более точную информацию о происходящем под лодкой и в ближайших окрестностях. Так легче искать конкретную яму, бровку или банку. Чем ближе к поверхности эхолот показывает рыбу, тем ближе к курсу движения Вашей лодки эта рыба находится. Однолучевой эхолот на рыбалке — тоже хороший помощник, не обязательно гнаться за количеством лучей.

Устройство и основные принципы работы эхолота

Люди занимаются рыболовством уже тысячи лет. Перед всеми, кто удит рыбу, стоит одна и та же задача – найти рыбу и сделать так, чтобы она клюнула на наживку. Эхолот, конечно, рыбу за вас не поймает, зато поможет ее найти.

Принцип действия

Эхолот по-английски «sonar». Этот термин является сокращением от словосочетания «SOund» (звук), «NAvigation» (навигация) and Ranging (определение расстояния)». Эхолоты были созданы как средство слежения за субмаринами во время Второй мировой войны. Эхолот состоит из передатчика, преобразователя, приемника и экрана.

Вкратце работу эхолота можно описать так. Электрический импульс от передатчика преобразуется преобразователем в звуковую волну и посылается в воду. Если эта волна ударяется о какой-то предмет, она отражается. Эхо попадает в преобразователь, который преобразует его обратно в электрический сигнал, усиливаемый приемником и подаваемый на экран. Поскольку скорость звука в воде является величиной постоянной (около 1,575 км/сек), то, замерив промежуток времени между передачей сигнала и получением эхо, можно вычислить расстояние до предмета. Этот процесс повторяется много раз в секунду.

 

Наиболее часто в эхолотах используется частота 192-200 кГц, однако в некоторых моделях применяется частота 50 кГц. Хотя эти частоты находятся в пределах звукового спектра, ни человек, ни рыба их не ощущают (поэтому не волнуйтесь, что эхолот вспугнет вам рыбу – она его просто не услышит).

Как сказано выше, эхолот посылает и принимает сигналы, затем «отражает» эхо на экране. Поскольку это происходит много раз в секунду, на экране эхо представляется в виде непрерывной линии, отображающей сигнал, поступающий со дна. Помимо него, на экране отображаются эхосигналы от всех встретившихся ну пути объектов между поверхностью воды и дном. Зная скорость прохождения звука в воде (около 1,575 км/сек) и время, требующееся для приема эхо, прибор может вычислить глубину воды и определить наличие в ней рыбы.

Работа системы в целом

Высококачественный эхолот состоит из четырех базовых компонентов:

• мощного передатчика;

• эффективного преобразователя;

• чувствительного приемника;

• экрана с высоким разрешением и контрастностью.

Все части системы должны быть сконструированы в расчете на совместную эксплуатацию при любых погодных условиях и экстремальных температурах. Высокая мощность передатчика увеличивает вероятность того, что вы получите ответное эхо в глубокой воде и при плохой погоде. Она позволит вам различить мелкие детали, например, мелкую рыбешку и подводные предметы.

Преобразователь должен не только справляться с высокой нагрузкой от передатчика, но и преобразовывать электрическую энергию в звуковую с минимальными потерями в силе сигнала. С другой стороны, преобразователь обязан «слышать» слабейшие эхо, отражающиеся от глубин и мельчайшей рыбешки.

Приемнику также приходится иметь дело с очень широким диапазоном сигналов. Он ослабляет слишком сильный сигнал от передатчика и усиливает слабые сигналы, поступающие от преобразователя. Кроме того, он различает оказывающиеся слишком близко к друг другу объекты и показывает их в виде индивидуальных импульсов на экране.

Экран должен иметь высокое разрешение (вертикальные пиксели) и высокую контрастность, чтобы картинка на нем была четкой и детальной (например, чтобы можно было различать дугообразные сигналы от рыб и разные мелкие объекты).

Частота

В большинстве эхолотов в настоящее время используется частота 192-200кГц, и лишь некоторые работают на частоте 50 кГц.

У каждой из этих частот есть свои преимущества, однако почти во всех случаях в пресной воде и в большинстве случаев в соленой воде используют диапазон от 192 до 200 кГц. Он обеспечивает наивысшую детальность, лучше всего работает в мелководье и когда судно на ходу, дает меньше шумов и лишних эхо. Кроме того, на более высоких частотах выше разрешение объекта. Например, две плывущие рядом рыбины будут отображены на экране как два отдельных объекта, а не как одно сплошное «пятно».

В некоторых случаях оптимальной является частота 50 кГц. Как правило, эхолот с рабочей частотой 50 кГц (при равных условиях и мощности) способен проникать на бóльшие глубины, нежели эхолоты, работающие на более высоких частотах. Это связано с естественной способностью воды поглощать звуковые волны. Звуки более высокой частоты поглощаются быстрее, чем звуки более низкой частоты. Поэтому в более глубоких водах обычно применяются преобразователи 50 кГц. Кроме того, у преобразователей, работающих на 50 кГц, как правило, шире угол охвата, чем у их «коллег», работающих на 192 и 200 кГц. Благодаря этой особенности их удобно применять для слежения за составными даунриггерами, даже на относительном мелководье, поэтому многие рыбаки предпочитают частоту 50 кГц.

Предлагаем вашему вниманию сводную таблицу различий между эхолотами, работающими на указанных выше частотах:

192 и 200 кГц

• меньшие глубины

• узкий угол излучения

• лучше разрешение и различение цели

• меньшая восприимчивость к шумам

50 кГц

• бóльшие глубины

• широкий угол излучения

• хуже разрешение и различение цели

• более высокая восприимчивость к шумам

Преобразователи

Преобразователь выполняет функцию антенны эхолота. Он преобразует электроэнергию от передатчика в звуковой сигнал высокой частоты. Звуковая волна от преобразователя проходит сквозь воду и отражается от находящегося в воде объекта. Когда до преобразователя докатывается ответное эхо, он преобразует звук обратно в электрический сигнал, который посылается на приемник эхолота. Частота преобразователя должна совпадать с частотой эхолота. Другими словами, нельзя использовать преобразователь 50 кГц и даже 200 кГц вместе с эхолотом, рассчитанным на 192 кГц. Преобразователь должен выдерживать мощные импульсы передатчика, преобразовывая как можно большую часть импульса в звуковую энергию. В то же время, он должен быть достаточно чувствительным, чтобы принимать тишайшие эхо. Все это должно происходить на нужной частоте, а эхо на других частотах должны отбрасываться. В общем, преобразователь должен быть очень умелым.

Кристалл

В качестве активного элемента в преобразователе используется искусственный кристал (цирконат свинца или титанат бария). В процессе изготовления химические вещества смешивают и заливают в формы, которые ставят в печь, где химические компоненты превращаются в отвердевшие кристаллы. После охлаждения на обе стороны кристалла наносится проводящее покрытие. К нему привариваются проводки, чтобы кристаллы можно было подсоединить к кабелю преобразователя. От формы кристалла зависит и его частота, и угол его излучения. У круглых кристаллов (используемых в большинстве эхолотов) частота зависит от толщины кристалла, а от его диаметра зависит угол излучения или угол охвата (см. раздел, «Углы излучения»). Например, при частоте 192 кГц кристалл с углом излучения 20° имеет диаметр примерно 2,5см, в то время как для излучения 8° требуется кристалл диаметром приблизительно 5,1см. Все логично. Чем больше диаметр кристалла, тем меньше угол излучения. Именно поэтому преобразователь с углом излучения 20° намного меньше преобразователя с углом излучения 8°, при одинаковой рабочей частоте.

Корпус

Корпуса преобразователей бывают любых форм и размеров. Большинство из них изготавливаются из пластика, однако некоторые из преобразователей, рассчитанных на монтаж в корпус судна, изготавливаются из бронзы. Как мы уже говорили, размер кристалла определяет частоту и угол излучения. В свою очередь, размеры корпуса преобразователя зависят от размеров расположенного в нем кристалла.

В настоящее время существует четыре основных типа корпуса преобразователя. Это [1] сквозные корпуса (монтируются сквозь корпус судна), [2] корпуса, прикрепляемые к внутренней стенке корпуса судна, [3] переносные и [4] монтируемые на транце.

Преобразователи со сквозным корпусом вставляются в отверстие, просверленное в корпусе судна. Как правило, они снабжены длинным штоком, который пропускают сквозь корпус и закрепляют гайкой соответствующего размера. У плоскодонок монтаж этим и ограничивается. Для вертикальной установки преобразователя по борту судна, имеющего корпус V-образной формы, понадобится деревянный или пластмассовый обтекатель. Сквозные преобразователи обычно устанавливают на судах со стационарным двигателем, впереди рулей, гребных винтов и валов.

Преобразователи с корпусами второго типа приклеиваются эпоксидной смолой непосредственно к внутренней стенке стекловолоконного корпуса судна. Звук передается и принимается сквозь корпус судна, при этом работа эхолота становится менее эффективной (глубина действия эхолота будет ниже, чем у эхолота, установленного на транце). Корпус судна должен быть выполнен из твердого стекловолокна. Даже не пытайтесь «пробить» лучами эхолота корпус из алюминия, дерева или стали. Звук не проходит сквозь воздух, поэтому если корпус судна изнутри укреплен конструкцией из дерева, металла или пенопласта, перед установкой эхолота ее придется демонтировать. Еще один недостаток эхолота данного типа заключается в том, что его нельзя оптимально настроить на дугообразные сигналы рыб. Впрочем, наряду с недостатками есть и существенные преимущества. Во-первых, его не поломает корягой или камнем, т.к. он расположен внутри судна. Во-вторых, он, не выступая из корпуса судна и не препятствуя течению, и будучи установлен там, где поток воды плавно обтекает корпус, довольно хорошо, как правило, работает при больших скоростях хода судна. В третьих, он не обрастет.

Переносные преобразователи, как видно из их названия, крепятся к корпусу судна временно. Обычно их крепят при помощи одной или несколько присосок. Некоторые переносные преобразователи могут крепиться и к электродвигателю для троллинга.

Транцевые преобразователи крепятся на транце судна и находятся в воде, немного ниже днища судна. Среди перечисленных выше четырех типов транцевые преобразователи по популярности лидируют с большим отрывом. Транцевый преобразователь с тщательно продуманной конструкцией будет работать на любом судне (кроме судов со стационарным двигателем), в том числе при высокой скорости хода судна.

Эксплуатация преобразователя на скорости

Годы назад, когда эхолоты для спортивного рыболовства только появились, бóльшая часть рыбачьих судов представляла собой мелкие лодки с подвесными моторами. По-настоящему мощный подвесной мотор развивал 50 л.с., при этом уже тогда большинство эхолотов были переносными, и их было несложно переставлять с лодки на лодку. Это преимущество считалось важнее способности работать на высокой скорости. Тем не менее, по мере совершенствования лодок, все больше людей хотели иметь на борту стационарный эхолот, способный действовать на скоростях, развиваемых лодкой. В связи с этим началась работа над созданием преобразователя, нормально функционирующего независимо от скорости судна.

 


Серьезным препятствием для работы эхолота на высоких скоростях является кавитация. Если поток воды вокруг преобразователя равномерен, преобразователь без проблем посылает и принимает сигналы. Если же поток воды «вздыбливается» под воздействием непогоды или кромок судна, он становится турбулентным настолько, что воздух отделяется от воды в виде пузырьков. Это явление называется кавитацией. Если над преобразователем (в котором расположен кристалл) проносятся пузырьки воздуха, на экране эхолота отображается «шум». Дело в том, что эхолот предназначен для работы в воде, а не в воздухе. Если же над преобразователем проносятся пузырьки воздуха, сигнал преобразователя отражается от пузырьков обратно на преобразователь. Поскольку воздух граничит с преобразователем, эти отражения очень сильны. Они создают помеху более сильным сигналам, отражающимся от дна, подводных объектов, рыб, из-за чего их становится трудно или невозможно различить.

Для решения данной проблемы преобразователю нужен корпус, который вода бы обтекала, не создавая турбулентности. Это достаточно сложно из-за множества требований, предъявляемых к современному преобразователю. Он должен быть компактным, чтобы не мешать подвесному мотору и не препятствовать потоку воды за ним. Он должен быть прост в установке на транце, чтобы при монтаже можно было обойтись минимумом отверстий. Он должен «уметь» откидываться, чтобы избегать повреждений при столкновении с какими-либо предметами.

Проблема кавитации не ограничивается формой преобразователя. Корпуса многих судов сами способствуют образованию пузырьков воздуха, которые создают завесу над лицевой частью установленного на транце преобразователя. Эта проблема особенно актуальна для алюминиевых лодок, из-за сотен выступающих из корпуса заклепок, каждая из которых образует свой собственный поток пузырьков, особенно при движении лодки на высокой скорости. Во избежание этой проблемы нужно установить лицевую часть преобразователь таким образом, чтобы поток пузырьков воздуха проходил над ней. Иными словами, кронштейн преобразователя необходимо установить как можно ниже по транцу.

Углы излучения преобразователя

Преобразователь фокусирует звук в луч. Чем дальше вглубь идет звуковой импульс, испускаемый излучателем, тем шире его охват. Если бы вы изобразили его на листе миллиметровки, вы бы увидели, что он образует конус, поэтому угол излучения еще называют углом конуса. Звуковой сигнал наиболее силен вдоль центровой линии (оси) конуса, постепенно ослабевая по мере удаления от центра.

Чтобы измерить угол излучения преобразователя, мощность излучения замеряют в центре или на оси конуса, затем сравнивают с мощностью по мере удаления от центра. Когда мощность падает наполовину (-3 дБ), измеряют угол относительно оси. Угол в диапазоне от –3дБ с одной стороны оси до –3 дБ с другой стороны оси называют углом излучения (конуса).

Отметка половинной мощности –3 дБ считается стандартной в электронной промышленности, и большинство производителей измеряют угол излучения именно таким образом, хотя некоторые берут за основу отметку –10 дБ, где мощность излучения составляет 1/10 от мощности, имеющей место на оси. Угол получается более широким, поскольку замер производится в точке, расположенной гораздо дальше от оси. Эффективность работы преобразователя остается прежней, немного отличается лишь метод измерения. К примеру, на отметке – 3 дБ угол излучения преобразователя составляет 8°, а на отметке –10 дБ он составляет 16°.

Устройства с более широким лучом помогут вам увидеть более широкую картину подводного мира, но за счет уменьшения глубины проникновения луча, поскольку мощность передатчика направляется вширь, а не вглубь. Узкоугольный преобразователь не даст вам такого полного представления о том, что творится вокруг, как широкоугольный, однако позволит вам заглянуть значительно глубже. Дело в том, что узконаправленный преобразователь концентрирует мощь передатчика на меньшем участке. У эхолота с широкоугольным преобразователем сигнал, отражающийся от дна, на экране шире, чем у эхолота с узкоугольным преобразователем, поскольку вы наблюдаете более широкий участок дна. Зона охвата широкого угла излучения намного больше, чем зона охвата узкого угла излучения.

Высокочастотные преобразователи (192 кГц) бывают как узкоугольными, так и широкоугольными. В пресной воде, как правило, используются «широкоугольники», тогда как для соленой воды подходят только узкоугольные эхолоты. У низкочастотных эхолотов (50 кГц) широта угла излучения варьируется от 30 до 45 градусов. Хотя преобразователь наиболее чувствителен в пределах собственного угла излучения, до вас будут доходить и некоторые эхосигналы из-за этих пределов, правда, не такие сильные.

Состояние воды и дна

От типа воды, в которой эксплуатируется эхолот, в немалой степени зависит его эффективность. Звуковые волны легко перемещаются в прозрачной пресной воде, и в большинстве озер так и происходит.

В соленой воде звук поглощается и отражается взвешенными веществами. Наиболее восприимчивыми к рассеиванию звуковых волн оказываются более высокие частоты, которые не в состоянии проходить сквозь соленую воду так же хорошо, как более низкие. Отчасти, проблема эксплуатации в соленой воде состоит в том, что это крайне динамичная среда (фактически, мировой океан). Ветер и течения постоянно перемешивают в ней воду. Под действием волн в воде образуются и перемешиваются пузырьки воздуха, рассеивающие сигнал эхолота. Микроорганизмы, типа водорослей и планктона, рассеивают и поглощают сигнал эхолота. То же самое делают и находящиеся в воде минеральные вещества и соли. На пресную воду тоже воздействуют ветры, течения и живущие в ней микроорганизмы, но все таки меньше, чем на соленую.

Ил, песок, растительность на дне поглощают и рассеивают сигнал эхолота, ослабляя ответное эхо. Камень, сланец, кораллы и другие твердые предметы хорошо отражают сигнал эхолота. Вы увидите разницу, взглянув на экран. Мягкое, илистое дно отображается на нем в виде тонкой линии, а твердое, каменистое дно отображается в виде широкой полосы.

Работу эхолота можно сравнить с поведением света от фонаря в темной комнате. Когда свет перемещается по комнате, он хорошо отражается от белых стен и ярких твердых предметов, однако если направить фонарь в покрытый темным ковром пол, отражение будет слабее, поскольку ковер поглощает свет, а шероховатая текстура рассеивает его, из-за чего к вам возвращается меньше света.

Температура воды и термоклины

Температура воды оказывает существенное влияние на жизнедеятельность рыб. Рыба хладнокровна, и температура ее тела всегда совпадает с температурой окружающей ее воды. Зимой в холодной воде обмен веществ рыбы замедляется. В этот период ей требуется примерно в четыре раза меньше пищи, чем летом. Большинство рыб не мечут икру, если температура воды не находится в каком-то довольно узком диапазоне. Встроенные во многие наши эхолоты датчики температуры поверхности воды помогают определить температуры верхних слоев воды, являющиеся наиболее благоприятными для метания икры различными породами рыб. К примеру, форель погибает в реках, вода в которых становится слишком теплой. Окунь и другие породы рыб в конце концов погибают, если скапливаются в озерах, вода в которых летом недостаточно прогревается. И хотя некоторые рыбы восприимчивы к перепаду температур меньше, чем другие, у каждой породы есть свой определенный температурный диапазон, в границах которого она пытается оставаться. Собирающуюся у поверхности воды рыбу на глубоких участках привлекает именно благоприятная для них температура. Мы полагаем, что там она чувствует себя наиболее комфортно.

В озерах температура в пространстве между поверхностью и дном редко бывает одинаковой. Как правило, за более теплым слоем воды следует более холодный. Граница между двумя слоями называется термоклином. Глубина и толщина термоклина могут меняться в зависимости от времени года и времени суток. В глубоких озерах может иметься два термоклина и более. Это существенно, поскольку многим породам промысловой рыбы нравится располагаться прямо в нем либо немного выше или ниже него. Часто мелкая рыбешка оказывается над термоклином, а более крупная промысловая рыба покоится в нем или чуть ниже. К счастью, на экране эхолота эта разница в температурах отражена. Чем значительнее разность температур, тем четче на экране виден термоклин.

Дугообразные сигналы рыб

Один из вопросов, которые нам задают наиболее часто, звучит так: «Как сделать так, чтобы на экране отображались дуги рыб?» Добиться этого совсем не сложно, требуется лишь некоторое внимание к нюансам, причем не только при настройке эхолота, но и при его монтаже.

Разрешение экрана

Количество вертикальных пикселей, на которые выводится изображение, называется разрешением экрана. Чем больше вертикальных пикселей на экране эхолота, тем четче он будет отображать дугообразные сигналы рыб. В приведенной ниже таблице для двух экранов указаны размеры пикселей и отображаемые ими участки в диапазоне дальности от 0 до 50 футов.

Как видите, при работе эхолота в диапазоне дальности от 0 до 100 футов на одном пикселе экрана представлен больший объем воды, чем при работе в эхолота в диапазоне 0-10 футов. Скажем, если у экрана эхолота 100 вертикальных пикселей, а эхолот работает в режиме 0-100 футов, каждому пикселю соответствует глубина 12 дюймов (ок. 30 см). Рыба должна быть по-настоящему крупной, чтобы при таком диапазоне быть обозначенной на экране в виде дуги! Однако, если сделать изображение мельче, с помощью функции масштабирования расширив диапазон на 30 футов (к примеру, с 80 до 110 футов), каждому пикселю будет соответствовать 3,6 дюйма (ок. 9 см). Теперь, благодаря масштабированию, та же самая рыба обозначается на экране в виде дуги. Размер дуги зависит от размеров рыбы: мелкая будет обозначена маленькой дугой, более крупная – более внушительной дугой и т.д.

При пользовании эхолотом с экраном с небольшим количеством вертикальных пикселей на мелководье, рыба, плывущая у самого дна, обозначается отдельной прямой линией. Это связано со слишком маленьким для такой глубины количеством точек. На глубокой воде (где сигнал от рыбы до лодки проходит большой путь), при отображении на экране участка дна в радиусе 20-30 футов, рыбы изображаются в виде дуг, располагающихся возле дна или какого-нибудь объекта. Это связано с уменьшением размера пикселей в большем конусе.

Скорость обновления экрана

Скорость прокрутки или обновления экрана также влияет на то, как отображаются дуги рыб на экране. Чем выше скорость обновления, тем больше пикселей активируется по мере прохождения рыбы в конусе и тем выше качество изображения дуги. (Однако не устанавливайте слишком высокую скорость обновления экрана, так как дуги рыб получатся растянутыми; поэкспериментируйте, пока не выберете скорость, наиболее вам подходящую.)

Монтаж преобразователя

Причиной недостаточно хорошего отображения дуг рыб на экране может быть неправильно выполненный монтаж преобразователя. Если он установлен на транце, его лицевая часть должна находиться в воде и быть направлена перпендикулярно вниз. Если преобразователь окажется не под прямым углом к воде, качественного отображения дугообразных сигналов рыб на экране вы не получите. Если дуга на экране загнута кверху, а не книзу, значит, передняя часть преобразователя слишком приподнята, и ее нужно опустить. Если на экране отображается лишь задняя половина дуги, значит, передняя часть преобразователя слишком опущена, и ее нужно приподнять.

И еще о дугах рыб

Самая мелкая рыбешка вообще может не отображаться в виде дуг. Из-за различных факторов состояния воды, таких, как сильные помехи от ее поверхности, термоклины и т.д., бывает, что и максимальной чувствительности эхолота недостаточно, чтобы на экране показались дуги рыб. Старайтесь установить максимальную чувствительность, но при этом следите, чтобы на экране не появлялось слишком много «мусора». Этот способ подходит для средних и больших глубин.

Стая рыб появляется на экране в виде множества различных образований и форм, в зависимости от того, какая часть стаи попала в зону излучения преобразователя. В условиях мелководья несколько плывущих рядом рыб отображаются в виде брусков, сложенных как попало. Там, где поглубже, каждая из рыб отображается на экране в соразмерно своим габаритам.

Почему именно дуги?

Рыбы обозначаются на экране дугами из-за соотношения между рыбой и углом излучения (конусом) преобразователя при прохождении судна над рыбой. Как только рыба пересекает линию конуса, на экране активируется пиксель. При прохождении судна над рыбой расстояние до нее сокращается, при этом глубина нахождения рыбы (расстояние по вертикали между судном и рыбой), отображаемая на экране, становится меньше (дуга идет вверх). Когда центр конуса оказывается непосредственно над рыбой, заканчивается формирование первой половины дуги. В этот момент рыба находится к судну ближе всего, сигнал усиливается, и дуга становится толще. По мере увеличения расстояния между судном и рыбой дуга на экране идет вниз и обрывается после того, как рыба выплывает из конуса (т.е. зоны излучения) эхолота.

Если рыба не проходит по прямо по центру конуса, дуга получается менее отчетливой. Поскольку рыба попадает в конус лишь на короткое время, эхосигналов меньше, а те, что все таки есть, слабее. Эта одна из причин, по которой в условиях мелководья эхолоту сложнее отображать на экране дуги рыб. Угол излучения оказывается слишком узок для того, чтобы сигнал успел приобрести форму дуги.

Помните, что для образования дуг судно и рыба должны двигаться относительно друг друга. На практике это, как правило, означает, что судно идет на тихом ходу. Если судно стоит на якоре или просто не двигается, дуги образовываться не будут, и рыбы, вплывающие в конус и выплывающие из конуса излучения эхолота отображаются на экране в виде простых горизонтальных линий.

Удачной рыбалки!

Ваш «Сусанин»

2 октября 2007 г.

Как работает эхолот для рыбалки? Принцип работы эхолота

Ошибочно думать, что имея эхолот удастся заставить рыбу самостоятельно попасться на крючок. Но использование эхолокаторов намного упрощает процесс рыболовства.

Впервые это устройство было создано во время второй мировой войны для слежки за передвижением вражеских подлодок. Сегодня их использование имеет множество направлений и помогает крупным суднам отслеживать траекторию, обходя опасные участки. А рыболовы с помощью таких устройств определяют рельеф дна, температуру воды и места скопления рыб.

В чем состоит принцип работы эхолота?

Чтобы выяснить, как работает эхолот для рыбалки, и какие процессы лежат в его основе, необходимо выяснить из каких частей он состоит.

Схема эхолота состоит из четырех основных блоков: передатчика, преобразователя, приемника и экрана.

Передатчик, погруженный в воду, испускает ультразвуковые волны определенной частоты. Рассеиваясь в воде, волна встречает на своем пути препятствия в виде рыб, водорослей, камней, рифов и дна. Отталкиваясь от этих поверхностей, она возвращается обратно к преобразователю.

Скорость распространения звука под водой – величина постоянная. В зависимости от того, на какой глубине находится объекты, волны затрачивают определенное время на отражение. Именно благодаря подобным расчетам удается с точностью определить глубину и рельеф дна, препятствия на пути и наличие рыбы. Звук эхолота практически не восприимчив для человека и рыбы, так что можно не беспокоиться, что испускаемые волны распугают всю живность.

От чего зависит качество работы эхолота?

В некоторых случаях на качество передаваемого импульса влияет состав воды. В соленой воде, из-за большого содержания растворенных минеральных веществ, передача волн проходит намного интенсивнее, чем в чистой. Также, на качество сигнала и глубину его проникновения влияет его частота. Низкочастотные электрозвуковые волны способны проникать на большую глубину, нежели сигналы более высокой частоты. Но они более подвержены воздействию помех.

Каким бы слабым не был обратный сигнал, собранный на преобразователь, он усиливается в приемнике и трансформируется в электрический сигнал, удобный для анализа. Именно этот сигнал отражается на экране устройства и показывает не только глубину, объекты, а также определят температуру воды. Информация передается в виде графического изображения. На этом и основывается работа эхолота. Видео он не записывает, а лишь отображает изменения показателей датчика.

Этот процесс происходит непрерывно, и датчик постоянно испускает волны. Благодаря этому удается отслеживать передвижения рыб и получать наиболее актуальную картину о состоянии дна. Даже если удается выяснить расположение рыбы, устройство не способно определить ее вид. Невозможно однозначно сказать показан ли сом на эхолоте или другая рыбешка. Это можно понять по поведенческим характеристикам водных обитателей.

Для удобства, некоторые виды эхолотов издают звук, когда мимо датчика проплывает рыба. А более современные устройства могут передавать изображение на экран в трехмерной визуализации.

В зависимости от условий, типа рыбалки и глубины водоема, можно самостоятельно выбирать режим работы и корректировать настройки эхолота. Более подробную информацию о строении устройства и правилах его эксплуатации можно найти в инструкции к эхолоту.

принципы и советы бывалых рыбаков

Рыбалка считается популярным видом отдыха для многих людей. Это не только хобби, активное провождение времени, но и настоящий спорт. Успешный рыболов обязан обладать соответствующими навыками и знаниями, постоянно покорять новые водоемы, совершенствуя себя и свою технику, а также уметь пользоваться современным оборудованием. Среди самых нужных для рыбака приборов находится эхолот. Еще одно его название – сонатор.

Особенности эхолота

Эхолот является незаменимым приспособлением для новичков и настоящих асов рыбалки. Он обладает несколькими функциями:

  • определение рельефа дна и подводных объектов;
  • исследование состояния воды;
  • нахождение скопления рыб;
  • измерение глубины водоема.

Чтобы понять, как пользоваться эхолотом, необходимо понять принцип его действия. Устройство получает информацию о различных объектах путем отправления звуковых импульсов. Те, в свою очередь, отражаясь от предметов, снабжают прибор ценными сведениями. Некоторые дорогостоящие модели обладают и дополнительными возможностями. К примеру, они могут легко определить вид той или иной рыбы под водой, сообщить о температуре водоема и так далее.

Принципы применения сонатора в лодке

Подобрав для себя подходящий прибор, рыболов должен ознакомиться с особенностями его функционирования и имеющимися способностями, чтобы вникнуть, как пользоваться эхолотом. Если глубина реки или озера небольшая, то целесообразной считается частота излучения равная 192 герцам. Лучи должны быть узкими, находящимися в диапазоне от 20 до 24 градусов.

Лодку следует двигать вперед очень аккуратно и медленно, ведь тогда картинка на экране приспособления будет более точной и четкой. Предметы, расположенные под судном, видны с правой стороны устройства. Изгибы дна отображаются в его нижнем краю.

Опытным рыбакам известно, что изображение не всегда соответствует действительности, так как оно показывает сведения с некоторым опозданием, а не в реальном времени. Информация, находящаяся в левой части, получена раньше, нежели с правой стороны. Поэтому, выбрав место для остановки лодки, ее нужно будет вернуть чуть назад.

Применение прибора с берега

Как пользоваться эхолотом, расположившись на твердой земле? Очень просто. Для этой цели следует приобрести специальный сонатор, обладающий беспроводным сканером. Подобное приспособление отлично подойдет для изучения водоема с берега.

Устройство необходимо будет хорошо прикрепить к леске и закинуть ее в воду. Затем следует с медленной скоростью тянуть оборудование в свою сторону, внимательно наблюдая за картинкой на экране. Так как на проекции будут видны лишь те объекты, которые попали в луч сонатора, придется забрасывать удочку несколько раз. Тогда беспроводной эхолот покажет больше сведений.

Отличия беспроводного прибора

В составе такого приспособления имеется только монитор и локатор. Его отличие состоит в отсутствии соединяющего блоки кабеля. Его работа подразумевает сканирование окружающей местности посредством эхолокации. Информация, полученная блок-локатором, будет превращаться в радиоволны, а потом поступать в центральную часть устройства.

В главном блоке пришедшие сигналы трансформируются в картинку на мониторе. При этом составные элементы сонатора обладают отдельными источниками питания. Беспроводной эхолот имеет полностью герметичный корпус. Он снабжен удобной крепежной частью для шнура или рыболовной лески, а также отличается плюсовой плавучестью.

Сонатор Garmin

В специализированный центрах продаж можно найти оборудование от всевозможных производителей. Одним из наиболее известных и проверенных изготовителей считается “Гармин”.

Эхолот Garmin обладает ощутимыми преимуществами:

  • широчайший модельный ряд;
  • внушительный ценовой диапазон;
  • простое пользование;
  • завидная надежность;
  • хорошая эффективность;
  • прекрасное качество.

Модели, предназначенные для зимней рыбалки, с легкостью получают важную информацию даже сквозь толщу льда, существенно увеличивая улов. Приспособление обладает особым датчиком, которые испускает акустические волны. Под водой они наталкиваются на барьеры, тут же возвращаясь назад. Эхолот Garmin сообщает рыболову данные о расстоянии, прошедшем волной, затраченном времени и объектах, повстречавшихся на пути.

Секреты успешной рыбалки

Чтобы успешно пользоваться устройством, прилагается инструкция к эхолоту. Для максимального увеличения улова стоит применить свои настройки. Для этого:

  1. Не нужно бояться проводить эксперименты.
  2. Следует лично задать глубину, на которой предполагается рыбачить.
  3. Необходимо установить очищение изображения и шумоподавление для получения лучшей картинки.
  4. У цветных моделей стоит подкорректировать данные экрана.
  5. Можно определить уровень чувствительности. Рекомендуется остановиться на 75 процентах.

Если рыбопоисковый эхолот предполагается применять в зимнее время, то профессионалы советуют поберечь от холода аккумулятор. Для этого делают специальный ящик из пенопласта либо теплую сумку. При данном виде рыбалки актуальны лишь два способа использования прибора: вмораживание в лед или помещение сонатора в изготовленную лунку. Каждый из них создает некоторые трудности – либо отковыривать прибор от замерзшей воды, либо мастерить для него удобный и надежный держатель. Также не следует зимой слишком полагаться на функцию оборудования по распознаванию рыбы. В условиях холода она будет не слишком эффективной.

Таким образом, особых проблем в вопросе, как пользоваться эхолотом, не возникает. Важно прислушаться к изложенным рекомендациям, учесть условия эксплуатации приспособления, тогда оно поможет добывать поистине грандиозные уловы.

Выбор эхолота для рыбалки в 2020 году. Подробное руководство. – Статьи про эхолоты – Эхолоты для рыбалки и морская электроника – Каталог статей

Статья подготовлена экспертом Яндекс.Маркета

по подбору морской электроники и эхолотов 

Максимом Ляликовым

Содержание статьи:

1. Как выбрать эхолот для рыбалки в 2020 году:

О рыбопоисковых эхолотах слышал практически каждый рыбак в наше время, однако, далеко не каждый понимает принципы действия этих устройств, а главное, зачем он все-таки нужен на рыбалке. В настоящее время, моделей эхолотов появляется на рынке все больше и больше, поэтому необходимо выбирать такое устройство, которое будет полезным в зависимости от предпочитаемого вида ловли. Я более 3 лет консультирую рыбаков, надеюсь накопленные знания от общения с реальными пользователями этих устройств помогут Вам при покупке. В этой статье собраны ключевые моменты и советы по выбору качественного рыбоискателя.

2. Зачем нужны эхолоты и какие они бывают:

Основное назначение эхолота заключается в том, чтобы предоставить рыбаку максимально точную информацию, которая поможет лучше понять обстановку под водой, ведь “умение читать водоем” – это залог успешной рыбалки. Портативные эхолоты способны отображать рельеф дна, его плотность и однородность. Помимо этого, эхолоты нередко называют рыбоискателями, так как они могут показать наличие рыбы в том или ином месте, определить глубину до нее и температуру воды. Как правило, портативные рыбоискатели удобно носить с собой благодаря компактным размерам. Они легко помещаются в карманы, существуют даже модели, которые состоят из одного датчика способного подключается по Wi – Fi каналу к смартфону. Продвинутые профессиональные модели, помимо всего вышеперечисленного имеют поддержку картографии, могут выстраивать карту глубин, а также преобразовывать сигналы в 3D изображение и даже записывать видео. Однако, такие приборы не являются переносными и чаще всего устанавливаются стационарно на лодку или катер. Опираясь на данные от устройства и личный опыт, рыбак может быстро определить место для успешного заброса в конкретном месте. И все-таки большая часть рыбаков выбирает эхолоты для точного определения рельефа дна, так как это позволяет значительно быстрее найти бровки, в которых может находится рыба.
3. Принцип действия эхолотов:

Все эхолоты для рыбалки работают по принципу гидролокации. Датчик прибора генерирует электромагнитный сигнал, который затем преобразуется в ультразвуковую волну определенной частоты и посылается в глубину водоема. Как только ультразвуковая волна достигает любого твердого объекта, то она отражается от него и возвращается в преобразователь. Блок обрабатывает полученные сигналы и на основе скорости возвращения показывает преобразованную информацию на экране. Все современные рыбоискатели даже самые бюджетные способны определять температуру воды в реальном времени и глубину до отраженного объекта. Чтобы устройство было полезно на рыбалке, полученные данные на дисплее следует читать правильно. Для их корректного появления следует перемещать датчик по воде плавно, чтобы диаграмма не была слишком сжата или излишне растянута. Когда датчик располагается неподвижно изображение на дисплее будет представлять собой прямую линию. Для моделей приборов, которые устанавливаются на катера и лодки — это особенно важно, так как проплыв над одним и тем же объектом с разной скоростью можно получить совершенно разные данные и соответственно интерпретация показателей будет отличаться. Информация от излучаемого сигнала появляется справа налево на дисплее блока отображения рыбоискателя.

Пример работы беспроводного эхолота для рыбалки LUCKY FFW 718LI W:

4. Основные характеристики для выбора надежного эхолота для рыбалки:

Выбирать эхолот для рыбалки необходимо в зависимости от самого вида ловли, особенно, если Вы часто меняете тип водоема или предпочитаете исключительно один вид рыбалки. В целом, все эхолоты можно разделить на следующие типы и виды: для рыбалки зимой, для рыбалки летом, универсальные, для рыбалки с берега или лодки. Существуют модели с одним и несколькими датчиками (например, проводной и беспроводной), цветным и черно – белым дисплеем блока отображения, работающие от аккумулятора, батареек или генератора.

Цвет экрана и тип питания не являются столь важными характеристиками для рыбацких эхолотов, главные параметры – это угол луча ультразвукового сигнала и частота (интенсивность его излучения). Лучей может быть несколько или один. Чем шире угол луча, тем соответственно становится больше зона охвата прибора и вероятность засечь проплывающую рыбу возрастает, но у таких лучей есть и минус, на дисплее будет отображаться больше лишних объектов. Чем меньше угол луча рыбоискателя, тем точнее будут данные, которые он отображает. Это идеальный выбор, если Вы чаще находитесь на одном месте, например, останавливаетесь на лодке или во время зимней рыбалки. Частота луча не менее важная характеристика, которую заслуживает внимания при выборе эхолота для рыбалки, этот параметр влияет на способность проникновения луча в водную среду, то есть на глубину сканирования. Например, частота 50 кГц разработана исключительно для морского использования, глубина сканирования может достигать до 1500 метров. Еще одним важным критерием является допустима температура рабочей среды датчика. Некоторые модели не предназначены для применения в суровых зимних условиях. Но здесь стоит сразу сделать одну оговорку, если Вы увидели, что у зимнего эхолота заявленный диапазон рабочих температур находится в пределах от -10°C до +50°C, не стоит пугаться и сразу отказываться от таких моделей. Ведь температура самой воды в реках и озерах зимой никак не бывает ниже 0 °C, обычно температура составляет от 0 до +3 – 4°C. Это означает что датчик не будет находиться при температуре -10, так как он будет в воде. Следует избегать именно резкого перепада. Другими словами, если Вы достали датчик такой модели из воды, а температура воздуха меньше порогового значения, то следует протереть датчик от влаги и просто убрать в чехол или сумку до следующего применения. Пока датчик эхолота в воде ему ничего не угрожает. Что касается самого блока отображения, то низкие температуры на нем никак не сказываются (если в качестве блока не выступает смартфон, так как это зависит от характеристик самого смартфона), кроме ускоренной разрядки литий – ионных аккумуляторов. Модели на батарейках могут быть в некоторых случаях более предпочтительные, чем аккумуляторные, их можно моментально поменять и дальше использовать прибор. Время работы портативных рыбоискателей зависит только от частоты использования.

Эхолоты с беспроводными датчиками являются наиболее универсальными, так как их можно использовать для летней рыбалки, зимней, с берега или лодки, а некоторые модели даже для моря. Поэтому, прежде чем покупать ту или иную модель вспомните как часто Вы используете надувную лодку или ходите на рыбалку в зимний сезон, возможно для Вас оптимальным решением окажется портативная бюджетная модель для небольших пресных водоемов.

Эхолоты для рыбалки на плавательном средстве должны обладать функциями бокового и глубинного сканирования. Боковое сканирование позволяет расширить траекторию поиска, так как показывает обстановку вокруг датчика, а не только под ним. Нижнее сканирование (DownScan) подойдет любителям троллинга.

5. На какие функции обратить внимание начинающим рыбакам при выборе эхолота для рыбалки:

Начинающему рыбаку следует обратить внимание на интуитивно понятные модели без большого количества функций, которые чаще используются профессионалами. Поэтому любой эхолот независимо от ценовой категории должен отображать рельеф дна водоема, плотность дна, глубину до объектов, температуру, а также определять тип рыбы (маленькая, средняя, крупная). Конечно отталкиваться нужно и от технической подготовки самого пользователя. Эхолоты с огромным количеством функций, кнопок и непонятным меню как правило отталкивают начинающих рыбаков. Интерфейс устройства должен быть понятен, как ребенку, так и пожилому человеку. Не лишней функцией станет Zoom (увеличение) дисплея, это позволит детально рассматривать отдельные участки экрана. Звуковая сигнализация оповестит Вас о нахождении рыбы в области сканирования. Большинство базовых моделей эхолотов для рыбалки имеют все вышеперечисленные функции, поэтому такие приборы подойдут как начинающим рыбакам, так и опытным специалистам, решившим проверить свои знания экспериментально. Самыми распространенными моделями эхолотов для новичков со всеми базовыми функциями считаются рыбоискатели Lucky.

Самые популярные модели эхолотов среди рыбаков, независимо от рыболовного стажа:

6. В чем основное отличие эхолотов для зимней рыбалки от остальных видов:

Если Вы являетесь любителем исключительно зимней ловли на льду, то первым критерием отбора зимнего эхолота станет рабочая температура датчика, при которой он не начнет показывать ошибочную информацию. Для зимней рыбалки больше подходят именно проводные модели приборов. Важно знать, что производители указывают не критическую температуру, при которой датчик выходит из строя, а допустимый диапазон для корректного отображения. Естественно, для зимнего эхолота чем больше минусовое значение, тем лучше. Второе на что стоит обратить внимание — это параметры самого луча. Будет плюсом, если устройство обладает несколькими лучами, например, 83 кГц с углом 60 градусов и 200 кГц с углом 20 градусов, это позволяет комбинировать режимы сканирования и получать более точную информацию. Для комфортной работы с эхолотом на льду изучите его габариты, так как тяжелый прибор будет неудобно носить за собой по сугробам. Еще одной важной рекомендацией при выборе зимнего эхолота является яркость дисплея, так как на тусклом экране в зимний солнечный день будет сложно читать информацию. Помимо всего вышеперечисленного, следует поинтересоваться есть ли у экрана оттенки серого. Так как это позволит Вам различать отображение плотности дна водоема, что в свою очередь поможет в выборе снасти и способе ловли. Блок обработки сигналов должен быть устойчивым к минусовым температурам и надежно защищен от попадания влаги внутрь. Сравнить и выбрать зимний эхолот можно прямо на нашем сайте.

Лучшие зимние эхолоты, проверенные временем:

Мутная вода может затруднить применение подводных камер на зимней рыбалке. Тогда остается только бурить и пробовать забрасывать вслепую. В этом и есть неоспоримое преимущество эхолотов перед подводными камерами, так как прозрачность воды не оказывает такого существенного влияния на их эффективности. А вот в соленой воде приборы с высокочастотными лучами будут менее эффективны в отличие от низкочастотных. Это обусловлено тем, что кристаллы соли рассеивают звуковые волны. То же самое относится и к динамичным водоемам, бурлящие потоки создают пузырьки воздуха внутри воды способные поглощать и рассеивать ультразвук. Все это необходимо учитывать перед покупкой эхолота. Дно водоема так же, как и вода оказывает непосредственное влияние на качество самого сигнала и соответственно отображаемую информацию. Мягкие осадочные породы (песок), грязь (ил), растительность уменьшают силу отражаемого сигнала, а значит вероятность получения помех или ложных данных увеличивается. Твердое дно и объекты лучше всего отражают сигналы, поэтому картинка от таких поверхностей всегда оказывается точнее и четче.

8. Как ухаживать за эхолотом чтобы он прослужил как можно дольше:

Независимо от вида и типа Вашего эхолота, правильная эксплуатация поможет увеличить срок его работы и предотвратит преждевременную поломку или возникновение неисправностей. Каждый производитель указывает сроки гарантии исключительно в рамках корректного использования. Давайте рассмотрим ключевые моменты. Если у Вас стационарный эхолот для плавательного средства, который подключается к внешнему источнику питания (например, генератору), то следует выбрать надежный стабилизатор напряжения. Это не только обезопасит эхолот от скачков напряжения, но и уменьшит помехи самого прибора. Эхолоты с трансдьюсером следует всегда выключать, если датчик не погружен в воду, так как в обратном случае это может привести к выходу из строя одного из блоков устройства. Не следует использовать источники питания с напряжением ниже указанного в характеристиках прибора. Подключать питание или ставить устройства на зарядку требуется только с помощью оригинальных кабелей от производителя. В датчиках некоторых беспроводных моделей (особенно на батарейках) встречаются резиновые прокладки, отвечающие за влагозащиту крышки датчика. Со временем эти прокладки следует менять. Если соблюдать все эти правила, это позволит увеличить корректную работу Вашего устройства.

Удачного Вам выбора! Если остались какие – то вопросы, то обязательно задавайте их в комментариях, и мы с радостью ответим на них.

Универсальные эхолоты для любого вида рыбалки:

что это такое, нужны ли, как пользоваться, на чем основывается принцип работы и как искать объект ловли?

Рыбалка – любимое занятие тысяч людей. С каждым годом эта индустрия развлечений усовершенствуется. На службу рыбакам помимо обычных удочек и снастей приходят вещи, использовавшиеся до этого в военной сфере.

Одним из таких устройств, которым активно пользуются любители рыбалки во всем мире, являются эхолоты. О том, что это такое, зачем он нужен, принципы работы и особенности ловли им мы и разберем в этой статье.

Зачем нужно рыболовное устройство?

Основной задачей, которая возложена на эти устройства, являются исследования рельефа дна и поиск скоплений рыбы. Обычно их разделяют: для летней и зимней рыбалки, а также эхолоты, предназначенные для ловли с берега либо с лодки.

Принцип работы

Как работает устройство? При запуске прибор направляет акустические эхо-сигналы в глубину дна и измеряет время между поданным сигналом и его возвратом, отраженным от дна реки или озера. В итоге он вычисляет расстояние до дна и показывает его рельеф. А также как и писалось выше, определяет места скопления рыбы. Ведь эхо акустического сигнала отражает не только сигнал от поверхности дна, но и от любого предмета, который отличается от плотности воды.

Предлагаем посмотреть видео о принципе работы эхолота:

Как пользоваться?

Как искать рыбу устройством? Благодаря правильному измерению глубины, можно найти хорошие места для рыбной ловли. После этого обязательно нужно изучить структуру дна.

Главное помнить, что для хорошей детальной картинки на экране прибора нужно использовать только цветные приборы.

Состояние воды и дна водоема определяется при помощи встроенного в трансдюсер специального температурного датчика. В случае, если в вашем водоеме илистое дно, то сигнал будет размытым. И наоборот, если жесткая поверхность, то более насыщенным. Также обязательно нужно чтобы датчик был в движении и скорость катера или лодки не должна превышать 60 км. в час.

После вышеперечисленных действий можно определять места скоплений рыбы. Эти данные зависят от степени загрязненности водоема, особенно если ваша лодка находится в движении. Лучше всего эхолот использовать для выявления больших косяков рыбы. А вот определить отдельную мелкую рыбу будет сложно. Но надо иметь ввиду, что зачастую прибор помечает таким же значком и сторонние предметы.

Всегда ли нужен?

На любой рыбалке есть определенно необходимые вещи, без которых она невозможна, например удилище. Эхолот однозначно к таким вещам не относится. Но все таки, рыбная ловля с ним комфортнее, успешнее и значительно повышает улов из-за вышеперечисленных функций. Поэтому брать или не брать его с собой индивидуальное дело каждого рыбака.

Показывает ли устройство размер особи?

В каждом рыбацком эхолоте заложен специальный чип, задачей которого является идентификация размера рыбы. Работа его основана на измерении движения тех, кто попал в луч. Прибор видит рыбу из-за ее плавательного пузыря. Чем больше он, тем больше контур рыбы будет показан на экране.

Пугает ли рыб?

Учитывая, что эхолот работает на принципе ультразвуковых волн, то у рыб, благодаря обостренному шестому чувству, за которое отвечает их боковая линия, она помогает улавливать даже самые незначительные колебания воды ее направления и течения, а также и ультразвуковые волны устройства. В итоге рыба действительно чувствует работу аппарата и чем выше его мощность, тем чувствительнее к этому она относится.

При выборе эхолота желательно выбирать его с регулируемой мощностью.

Почему не показывает?

Основной проблемой, связанной с не эффективностью работы эхолота по поиску рыбы, является загрязненность самого водоема и мелкая рыба. К тому же прибор идентифицирует рыбу по плавательному пузырю. И зачастую летом водяные пузыри, которые образуются на водорослях, могут ошибочно быть приняты аппаратом за рыбу.

Особенности ловли

Сом

Сом – хищник, который обитает на дне реки. Этот речной обитатель никогда не сбивается в стаи, поэтому его так сложно обнаружить даже дорогостоящими устройствами.

При его выслеживании обязательно нужно увеличить чувствительность. Учитывая, что вид этой рыбы очень чувствителен и способен почувствовать даже слабые движения волн рака, то луч эхолота приведет его в движение.

Предлагаем посмотреть видео об особенностях ловли сома при помощи эхолота:

Судак

Судак – рыба, которую довольно сложно словить, особенно в зимний период времени. Стоит также отметить, что этого вида осталось немного и в основном он находится в искусственных водоемах.

Эхолот значительно облегчит обнаружение судака. При его использовании сразу же отключите функцию идентификации рыб. А сам прибор и его аккумулятор поместите в обычное пластиковое ведро. Места дислокации самой рыбы – это коряги, обычный мусор, отстаиваемый у самого дна. В основном стайная рыба.

Предлагаем посмотреть видео об особенностях ловли судака с эхолотом:

Щука

Это хищное животное, которое держится всегда обособленно от других видов рыб в водоеме. Поэтому выследить щуку эхолотом сложная затея, которая вообще может не принести положительных результатов. Ведь если в водоеме достаточно корма и кислорода, то хищник может вообще никак не отреагировать на вашу приманку.

При ловле щуки эхолотом достаточно придерживаться этих правил:

  1. Если заранее известно о большом количестве рыбы в реке или озере, то не стоит ловить одну или две.
  2. Требуется вести поиск таких мест в водоеме, где обнаруживается в близости друг от друга несколько щук.
  3. Если рыба не показывается на экране или мелькает на экране быстро, это свидетельствует о том, что у нее жор и нужно срочно прекратить поиск и приступить непосредственно к ловле.

Косяк

При обнаружении больших стай рыб, возможно также поимка и более крупных рыб, таких как щука и судак. Ведь они являются кормом для хищников и с большой вероятностью они будут находиться рядом с этим стаями. Подобные кормовые стаи находить нужно при помощи бокового сканера. Различают их по форме и дуге. Иногда косяки рыб могут иметь смешанный видовой состав, которые могут также отличаться и по размеру.

В статье мы рассмотрели основные функции, принципы работы эхолота. А также особенности при ловле определенных видов рыб. В итоге ловля данным устройством значительно повышает шансы на поимку даже крупной хищной рыбы.

Работа эхолота на видео

Данная статья не имеет цели рассказать о преимуществах и возможностях какой-либо конкретной модели эхолота, расположении и качестве лучей, сигнале преобразования – изображения на мониторе – мы расскажем об общих принципах работы этих устройств. Без сомнения, предпочтение всегда отдается качеству «картинки», которая получается эхолотом двухмерного изображения и с широким обзором, нежели изображение однолучевых моделей. Нюансы, правда, присутствуют всегда, деться от них некуда.

Рыболов должен осознавать, что каждый эхолот имеет свои возможности и процент брака. Часть приборов грешит тем, что компьютерная дорисовка часто вплетается в изображение на дисплее. Несоответствие реальной действительности и визуальной «картинки» — это проблема многих эхолотов. Так что будет уместным дать совет общего характера — приобретайте эхолоты надежного производителя, например, Garmin или Lowrance, и только хорошо показавшие себя на нашем рынке модели. Также найдите время ознакомиться с тем, как осуществляется работа эхолота посредством просмотра видео на нашем сайте.

Поиск рыбы с помощью эхолота

Когда пользователь разобрался с не очень сложным блоком управления, который располагается на корпусе устройства, понял общий принцип его работы, он должен использовать прибор по прямому назначению — для поиска и ловли рыбы. Но на практике между обнаруженным лучом эхолота объектом ловли и его условным символом на дисплее есть «огромного размера дистанция».

Если рыба плывет под днищем судна «на якоре», на ЖК-дисплее эхолота  появится рисунок небольшой дуги (символ рыбы). Аналогичная картинка будет, если судно находится в движении, а рыба – стоит. Идеальную арку на экране увидеть почти невозможно, ибо движется все – и судно, и рыба, причем рыба не обязательно пройдет под дном судна.

Верно ли, что чем больше арка – тем здоровее рыба? Не всегда так. Рыба одинакового размера, пересекающая вблизи поверхности воды центральную часть конуса излучения, будет находиться в этом конусе весьма непродолжительное время, потому на дисплее появится как небольшая арка (дуга или символ). Та же рыба в районе дна, проходящая через середину конуса, будет в этом конусе видна дольше, на экране эхолота будет отображаться как большая арка (дуга).

Так что чем ближе к судну рыба – тем меньше будет она на экране, чем больше – тем дальше будет она от судна. Такое положение дел обратно тому, каковое имеется при созерцании рыбы собственными глазами.Это лишь самое общее описание, лучше понять, как работает эхолот, видео на нашем сайте вам поможет.

В реальности, дуги на экране могут иметь разный размер еще по множеству иных причин:

• рыбка всплывает,
• погружается,
• пересекает крайнюю часть конуса под острым углом к направлению на судно,
• само судно движется быстрее-медленнее.

Рыба может вообще находиться столь близко к дну, что попадает в «мертвую зону» – видно ее не будет совсем.

Косяк мелкой рыбы, довольно тесно сбитый, на дисплее будет отображаться как очень большая дуга (арка), но края этой арки будут гораздо менее плотными, нежели бы данная арка явилась отражением звука от одной, но крупной рыбы. Арка может быть разной, но любая образована лишь реальной рыбой.

Как не допустить ошибок, пользуясь эхолотом?

Одна общая ошибка пользования ЖК-эхолота: изображение на экране не является состоянием водоема под дном судна, как думаю некоторые рыбаки. Под судном конус излучения распространяется от судна во все стороны, но на дисплее содержимое конуса может быть визуализировано лишь в одной плоскости.

Основная проблема у пользователей состоит в следующем: все жидкокристаллические эхолоты истинное пространственное расположение рыбки относительно судна не отображают, отображается только проекция на вертикальную плоскость изображения рыбы, вертикальная плоскость проходит сквозь центральную ось конуса. Это как раз и создает иллюзию, что все найденные лучом подводные объекты расположены под днищем судна.

Чтобы лучше понять, как работают эхолоты для рыбалки, видео на нашем сайте вам поможет.

Как настроить звук на вашем эхо-устройстве

Amazon анонсировала новую функцию «эквалайзер» для устройств Amazon Echo. Используя Alexa, теперь вы можете настраивать низкие, средние и высокие частоты вашей музыки.

(Изображение предоставлено Amazon)

Для непосвященных «бас» относится к самым низким тонам в вашей музыке – это то, что обычно исходит из сабвуфера или самого большого динамика в вашем доме или автомобиле. «Высокие частоты» относятся к нотам с более высокой частотой, включая гитарные соло, фортепианные баллады и многие женские голоса.«Средний уровень» охватывает все, что между ними. Используя Alexa, вы можете настроить каждую из «полос» между шестью отрицательными (очень тихо) и шестью (очень громкими) децибелами.

Amazon рекомендует использовать эту функцию на превосходных динамиках Echo, Echo Plus или Echo Show, чтобы в полной мере воспользоваться этой функцией. Но вы также можете использовать его на Echo Dot и Echo Spot. Эта функция также доступна сторонним разработчикам и уже включена в панель команд Polk и Sonos Beam.Эквалайзер выйдет в продажу в ближайшие несколько дней, поэтому он может не сработать сразу.

Вот три способа персонализировать музыку на устройстве с поддержкой Alexa:

1. Голосовая команда

Вы можете дать Alexa несколько команд для настройки музыки. Вы можете сказать что-то вроде «Алекса, включи басы», «Алекса, установи высокие частоты на 6» или «Алекса, установи максимальные низкие частоты». Чтобы отменить все изменения, скажите «Alexa, сбросьте эквалайзер».

2. Приложение Alexa

Если вы не говорите или слушаете музыку в наушниках в общественном месте, вы также можете персонализировать музыку со своего телефона.В приложении Alexa на телефоне выберите «Устройства Alexa» и имя устройства, которое вы используете. Оттуда нажмите «Звуки» и включите эквалайзер.

Затем вы сможете управлять настройками каждого диапазона из этого раздела приложения Alexa.

3. Echo Spot / Echo Show

Если у вас есть Echo с экраном (Echo Spot или Echo Show), вы можете выровнять музыку на самом устройстве.

Для этого проведите вниз по экрану и нажмите «Настройки». Зайдите в «Звуки» и включите «Эквалайзер».”Вы сможете изменить свои настройки здесь.

Чтобы узнать больше советов, приемов и практических рекомендаций, связанных с Alexa, ознакомьтесь с нашим полным руководством по Alexa.

.

Что такое эхо? Доктор Саунд объясняет феномен эха

Академия
Стартовая страница

Некоторые из вас могут узнать меня как Dr Sound, но мое настоящее имя на самом деле Джон-Эрик Эрикссон, и я работаю акустическим дизайнером здесь, в Konftel. В этом сообщении в блоге я попытаюсь объяснить явление эха в контексте телекоммуникаций.

Большинство из нас знает, как звучит эхо – это то, что мы, например, слышим в большой комнате, когда крикнув «привет», комната постепенно отвечает «привет… привет…» – но не многие знают, что это на самом деле есть, как это возникает и как этого избежать.

Когда мы говорим, звук наших голосов исходит из наших ртов прямо по воздуху, но некоторые также проходят через наш череп на пути к нашим ушам. Это то, что мы называем побочным звуком в контексте телекоммуникаций.Несмотря на то, что наша чувствительность к этому звуку крайне низка, это действительно важно для нас, поскольку нам нужно слышать себя, чтобы говорить естественным тоном.

Звук наших голосов также распространяется в комнату, отскакивая от стен, пока не возвращается в наши уши. Звук будет немного задержан, и это то, к чему человеческое ухо очень чувствительно, даже при чрезвычайно низких уровнях звука. Чем дольше звук возвращается, тем больше мы его замечаем и тем более тревожным он будет.

Естественно, этого мы хотим избежать во время конференц-связи, но когда возникают эхо, они могут быть в двух разных формах. Один из них – это линейное эхо, вызванное перекрестными помехами в кабелях или преобразователях. Это не займет много времени, чтобы это стало ОЧЕНЬ тревожным. Достаточно, чтобы возвращалось менее одного процента звука, чтобы вызвать проблемы.

В цифровой среде эта проблема может быть довольно большой, так как звук проходит через несколько конвертеров. Каждое преобразование требует времени и, следовательно, увеличивает риск воспринимаемого эха.Когда позже звук выходит из комнаты, появляется дополнительное эхо. Это называется акустическим или пространственным эхом.

Решением этой проблемы является подавление эха. Как посредством подавления линейного эха, чтобы удалить линейное эхо, так и за счет подавления акустического эха, которое устраняет эхо, вызванное конфигурацией комнаты и общей акустикой. Процесс удаления акустического эха представляет собой наиболее сложную задачу, и именно здесь необходимо сосредоточить внимание на достижении оптимального эхоподавления. С чисто практической точки зрения подавление эха работает за счет того, что устройство «изучает» эхо и создает противофазный звук для его подавления.

Вы хотите услышать, как я говорю об эхо, и послушать несколько примеров? Посмотрите это видео, в котором рассказывается обо всем.

Академия
Стартовая страница

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x