Дыхательная системы рыб: Анисимова И.М., Лавровский В.В. Ихтиология. Строение и некоторые физиологические особенности рыб. Дыхательная система. Газообмен

Внутреннее строение рыб — урок. Биология, Животные (7 класс).

Пищеварительная система

Пищеварительная система хорошо дифференцирована на отделы: рот (с зубами) — глотка — пищевод — желудок — кишка — анальное отверстие. 

 

У рыб имеются печень с желчным пузырём и поджелудочная железа, их соки помогают перевариванию пищи в кишечнике.

Дыхательная система

Дыхательная система расположена в области глотки. В глотке имеются жаберные щели, разделённые межжаберными перегородками, на которых расположены жабры (органы дыхания).

К четырём парам вертикальных костных жаберных дуг (выполняющих функцию опоры) прикрепляются жаберные пластины, разделённые на бахромчатые жаберные лепестки. Внутри них проходят тонкостенные, ветвящиеся на капилляры кровеносные сосуды. Через стенки капилляров идёт газообмен: поглощение из воды кислорода и выделение углекислого газа. Вода движется между жаберными лепестками благодаря сокращению мускулатуры глотки и движению жаберных крышек.

Со стороны глотки костные жаберные дуги несут жаберные тычинки. Они оберегают нежные жабры от засорения пищевыми частицами.

 

 

Кровеносная система

Кровеносная система рыб замкнутая. 

Сердце — двухкамерное, состоящее из \(1\) предсердия и \(1\) желудочка.

Через сердце проходит венозная кровь (содержащая углекислый газ).

Кровь насыщается кислородом и становится артериальной в жабрах.

  

 

У рыб \(1\) круг кровообращения:

венозная кровь от желудочка сердца через брюшную аорту по приносящим жаберным артериям поступает в жабры, где кровь становится артериальной (отдаёт углекислый газ и обогащается кислородом).

Артериальная кровь по выносящим жаберным артериям поступает в спинную аорту, снабжающую кровью внутренние органы.

В органах и тканях кровь отдаёт кислород, насыщается углекислым газом (становится венозной) и по венам поступает в предсердие сердца.

Нервная система

Центральная нервная система (ЦНС) состоит из головного и спинного мозга.

 

 

Головной мозг имеет пять отделов:

  • передний мозг;
  • промежуточный мозг;
  • средний мозг;
  • мозжечок;
  • продолговатый мозг.

У рыб хорошо развиты промежуточный и средний мозг, а также мозжечок. Передний мозг развит слабее, чем у вышестоящих классов животных.

Каждый отдел мозга выполняет свои функции. В разных отделах мозга находятся различные центры: в переднем — обоняния, контроля поведения животного и рефлексов; в среднем — зрения, в мозжечке — координации движений и равновесия, в продолговатом — слуха и осязания, а также центры регуляции дыхания, кровообращения, пищеварения.

Продолговатый мозг постепенно переходит в спинной мозг, представляющий собой длинный белый тяж. Он располагается в канале позвоночника. Этот канал образован отверстиями позвонков, соединённых друг с другом.

От головного мозга отходят черепно-мозговые нервы. Они обеспечивают работу органов чувств и некоторых внутренних органов.

От спинного мозга отходят спинномозговые нервы. Они регулируют согласованную работу мускулатуры тела, органов движения, внутренних органов.

Выделительная система

Органы выделения представлены лентовидными первичными почками.

Процесс выведения мочи состоит из следующих этапов. Кровь проходит по кровеносным сосудам почек, из неё отфильтровываются вредные вещества и образуется моча. Моча поступает по мочеточникам в мочевой пузырь, а из него по мочеиспускательному каналу выводится из тела.

 

Обрати внимание!

У подавляющего большинства костистых рыб конечным продуктом распада азотистых (в том числе и белковых) соединений, выводимым из организма, служит аммиак (как и у большинства беспозвоночных животных).

Аммиак намного токсичнее мочевины!

Двоякодышащие рыбы, впадающие в оцепенение при высыхании водоёмов (протоптерус), в активном состоянии выделяют аммиак, а в оцепенении — мочевину, накапливающуюся в организме. Она выводится после пробуждения рыбы.

Источники:

Биология. Животные. 7 кл.: учеб. для общеобразоват. учреждений / В. В. Латюшин, В. А. Шапкин. — М.: Дрофа.

Трайтак Д. И., Суматохин С. В.  Биология. Животные. 7 класс. — М.: Мнемозина.

Никишов А. И., Шарова И. Х.  Биология. Животные. 7 класс. — М.: Владос.

Константинов В. М., Бабенко В. Г., Кучменко B. C. / Под ред. Константинова В. М. Биология. 7 класс. — Издательский центр ВЕНТАНА-ГРАФ.

http://www.zooclub.ru/aqua/organizacia_kostnyh_ryb-5.shtml

Иллюстрации:

http://school-collection.edu.ru

Строение органов дыхания рыб

Основные органы дыхания рыб — жабры — находятся на жаберных дугах. С наружного края жаберной дуги расположены два ряда жабер­ных лепестков. Они красного цвета, так как в них разветвляются кро­веносные сосуды, и осуществляется газообмен.

У костных рыб дыхательные движения обеспечивают жаберные крышки. Когда рыба открывает рот, вода попадает в ротоглоточную полость. Жаберные крышки отводятся в стороны, и вода, проходя через жабры, отдает кислород. Когда же жаберные крышки возвращаются в исходное положение, вода выталкивается наружу. Хрящевые рыбы жаберных крышек не имеют: жаберные щели у них открываются не­посредственно наружу.

С внутренней стороны жаберной дуги расположены жаберные ты­чинки, служащие своеобразным фильтрующим аппаратом. Они предот­вращают попадание частиц пищи и посторонних частиц на жаберные лепестки, что мешало бы газообмену.

У небольшой группы современных рыб — двоякодышащих, — кроме жабр, имеется также одно или два легких. Это полые пузыри, сообща­ющиеся с пищеводом и позволяющие дышать атмосферным воздухом. Поэтому двоякодышащие рыбы могут обитать в водоемах с невысоким содержанием кислорода и даже переживать периоды засухи.

Органы чувств рыб приспособлены к восприятию различных раз­дражителей водной среды. Глаза имеют наружную прозрачную обо­лочку — роговицу и округлый прозрачный хрусталик. Это образование преломляет лучи света и концентрирует их на внутренней оболочке глаза, где расположены светочувствительные рецепторы. У рыб хруста­лик не способен менять ни форму, ни положение. Поэтому рыбы видят только на небольшом расстоянии, но могут различать форму и цвета предметов.

В костях черепа расположен ор­ган слуха — внутреннее ухо. В вод­ной среде звуковые волны распрост­раняются лучше, чем в воздушной, поэтому хорошо проникают через кости черепа. С внутренним ухом свя­зан орган равновесия. С его помощью рыба контролирует свое положение в пространстве.

Органы обоняния — пара обоня­тельных капсул в передней части головы, открывающиеся наружу отверстиями — ноздрями. Вкусовые рецепторы расположены преимущественно в ротовой полости и на языке.

Но наиболее важную роль в жизни рыб играет боковая линия. Это узкие канальцы, заполненные жидкостью, что тянутся вдоль боковых частей тела под чешуей. С внешней средой они соединя­ются через отверстия в чешуйках. На дне канальцев расположены ре­цепторы, способные воспринимать направление и скорость движения водных потоков. Поэтому даже слепые пещерные рыбы легко обходят разные преграды.

Основные характерные черты органов дыхания и чувств рыб:

  • органы дыхания — жабры; у некоторых видов имеется одно или два легких;
  • хорошо развиты органы чувств.

Как дышат рыбы под водой для детей — дыхательная система карася

Как дышат рыбы?

Рыба, как и сухопутные животные, нуждается в кислороде. Только она дышит не кислородом воздуха, как мы, а кислородом, растворённым в воде.

Орган дыхания рыбы — жабры. Они находятся в ротоглоточной полости, размещаются на четырёх парах хрящевых пластинках — жаберных дугах, а сверху покрыты жаберными крышками, окаймленными мягкой кожистой оторочкой.

Жаберные дуги на внутренней стороне имеют жаберные тычинки, а на внешней — жаберные лепестки.

Жаберные лепестки — это и есть элементы жабр как органов дыхания. Они пронизаны огромным количеством мельчайших кровеносных сосудов и поэтому имеют розовый цвет. В жаберных лепестках происходит поглощение кислорода из воды, когда она проходит сквозь жабры.

Жаберные тычинки — это фильтр, с помощью которого рыбы удерживают во рту мелкую живую пищу из воды. Таким образом, к жаберным лепесткам из ротовой полости поступает уже очищенная от механических примесей вода. В зависимости от вида рыб тычинки по своей форме и количеству различны. У хищных рыб (щука, окунь, налим) вместо жаберных тычинок есть бугорки. А вот рыбы, потребляющие мельчайшие растительные и животные организмы планктона (ряпушка, муксун, пелядь, тугун и другие), имеют длинные, частые и многочисленные тычинки. У сига, чира, карася, питающихся крупной животной пищей (моллюсками, ручейниками, хирономидами), тычинки короткие, редкие и малочисленные.

Жаберная поверхность в 10-60 раз превышает площадь тела рыбы.

Ритмичные движения жаберных крышек вызывают ток воды через рот, глотку и жабры. При вдохе жаберная крышка оттопыривается, а кожистая оторочка остается прижатой к телу рыбы. Жаберная полость увеличивается в объёме, а давление в ней уменьшается по принципу нагнетательного насоса, и сквозь оттопыренные жаберные дуги из глотки втягивается вода.

При выдохе жаберные крышки прижимаются к телу, а жаберные дуги сближаются, не давая воде возвратиться в глотку. В результате жаберная полость уменьшается, увеличивается давление и вода продавливается сквозь кожистую оторочку и выходит наружу.

Для нормальной работы жабр нужен постоянный приток свежей воды. Когда рыба плывет, вода входит в рот, омывает жабры и выходит через жаберные щели. Когда же рыба стоит на месте, она, чтобы обеспечить беспрерывное омывание жабр чистой водой, все время открывает и закрывает рот, приподнимает и опускает жаберные крышки. Таким образом она засасывет свежую и выталкивет старую воду.

Карась, карп, линь, обитающие в прудах с затхлой тиной, умеют дышать не только жабрами, но и поверхностью кожи. У рыб, которые на короткое время покидают водоем, например, илистых прыгунов и угрей, кожное дыхание достигает 60% от общего объема газообмена.

В условиях нехватки кислорода некоторые рыбы могут дышать… кишечником! Такие рыбы, как пескарь или сомик, могут заглатывать воздух и специальными (перистальтическими) движениями отправлять его в специальный отдел кишечника, который умеет осуществлять газообмен.

>
IT News

Как рыбы дышат под водой?

Дата Категория: Подводный мир

Как и всем живым созданиям, рыбам необходим кислород. Большинство рыб получает его при помощи специальных решетообразных органов, которые называются жабрами.

Жабры находятся прямо за ротовой полостью по обеим сторонам головы и, как правило, защищены полупрозрачной пластинкой — жаберной крышкой, или оперкулумом. Под оперкулумом располагается четыре ряда частично перекрывающих друг друга кроваво-красных жабер. Жабры состоят из костных дуг, которые поддерживают многочисленные жаберные лепестки — пары тонких мягких отростков, напоминающих плотно посаженные зубья расчески. Каждый лепесток содержит крошечные мембраны, или ламеллы, сотканные из миллиардов кровеносных капилляров. Стенки мембран настолько тонки, что текущая по ним кровь экстрагирует кислород непосредственно из водного потока, омывающего жабры. Затем ламеллы выводят из крови в воду углекислый газ. Вода, как и воздух, на 1/30 состоит из кислорода, и этот газовый обмен — кислорода и углекислого газа является ключевым компонентом подводной жизни.

Жесткие жаберные тычинки, расположенные на жаберной дуге, фильтруют поступающую воду. Кровеносные сосуды в жаберных лепестках снабжают кровью и осушают капилляры в ламелле.

Вода, проходящая по жаберным лепесткам, обогащает артериальную кровь кислородом. После этого кровь по венозным сосудам поступает в мембрану, где она освобождается от углекислого газа.

Поступление воды в жабры

Нормальная жизнедеятельность рыб обеспечивается непрерывным поступлением в жабры насыщенной кислородом воды. У большей части костных рыб рот и жабры работают во взаимодействии по принципу насоса: сначала жабры плотно закрываются, рот распахивается, а его стенки расширяются, затягивая внутрь воду. Затем ротовая полость сжимается, рот захлопывается, а жабры раскрываются, выталкивая воду изо рта. Такой способ дыхания, позволяющий воде проникнуть в жабры, даже если рыба находится в состоянии покоя, характерен для малоподвижных рыб, таких, как карп, камбала и палтус.

Дыхание начинается, когда рот рыбы раскрывается, а ротовая полость расширяется, всасывая воду.

Затем рот рыбы закрывается, и открываются оперкулумы, выталкивая воду из жаберной полости через жабры.

Правильнее дышать ртом

Активным рыбам — макрели, тунцу и некоторым видам акул — необходимо больше кислорода, чем их медлительным собратьям, таким, как камбала, угорь, электрический скат и морские коньки. Вот почему подводные рыбы часто плавают с открытыми ртами: это позволяет им пропустить через жабры значительно больший объем воды, а значит, и кислорода. Кроме того, жабры у этих видов рыб крупнее и толще, с тесно расположенными мембранами, что заметно повышает их респираторную способность. Эти рыбы вынуждены плавать даже во время сна, иначе они погибнут от недостатка кислорода (от удушения).

Ход занятия:

1. Организационный момент:

— Ребята, сейчас мы с Вами отправимся на рыбалку. (Дети змейкой друг за другом обходят стол и берут каждый по одной рыбе).

-Ловите, ловите. Каждый по одной.

2. Беседа по теме

— А кого это вы ребята поймали? (рыбу)

-А кто такие рыбы?

-А в каком водоеме вы поймали рыб? (в реке, море, озере)

— Значит, они какие? (речные, морские, озерные)

— Посмотрите на мольберт и назовите знакомых вам рыб. (Щука, окунь, лещ, сом)

3. Игра «Назови части»

— Скажите пожалуйста, а рыбы у вас у всех одинаковые? (нет)

-А чем же они отличаются? (цветом, размером, формой)

-А есть у них что-нибудь общее? Рассмотрите внимательно, сравните их между собой.

— Да, части тела. У каждой рыбы есть:

• туловище,

• голова,

• плавники,

• брюхо,

• хвост,

• глаза,

• рот

4. Дыхательная гимнастика

Дети встают в круг и берутся за руки.

— Давайте послушаем, как мы дышим (все дети прислушиваются к своему дыханию)

— Вдох (через нос) – все делают шаг вперед, выдох (через рот) – шаг назад.

-Сейчас мы с вами подышали все вместе чем? (воздухом)

— А чем ребята дышат рыбы? В воде есть воздух? Сейчас мы это узнаем.

5. Экспериментирование по теме «РЫБЫ».

Чем дышат рыбы?

Оборудование: прозрачная емкость с водой, кусочек пластилина.

Ход эксперимента: Положить в воду кусок пластилина. Через некоторое время на нем появятся пузырьки воздуха.

Вывод: в воде есть воздух. Когда зимой водоемы замерзают, то воздуха в воде становиться мало, и рыбы могут погибнуть. Поэтому люди специально делают проруби, а чтобы вода быстро не замерзала, в нее кладут пучки соломы и сверху присыпают снегом. Через снег и солому воздух хорошо проходит в воду. Вспомним сказку «По щучьему велению»: вода была скована льдом, щуке нечем было дышать, вот она и поднялась поближе к воздуху.

Дыхательная система рыб

Главной частью дыхательной системы рыб являются жабры. Именно благодаря им в кровь поступает основная масса кислорода, а из крови выделяется углекислый газ. Однако газообмен у рыб происходит не только через жабры. У всех видов в дыхании принимает участие кожа. Но при этом у видов, обитающих в водоемах с большим содержанием кислорода, дыхание через кожу незначительно. А у рыб, которые живут в условиях дефицита кислорода (сомы, карпы, угри), кожный газообмен может занимать существенную часть дыхания. Также у костных рыб небольшой газообмен происходит в плавательном пузыре. У двоякодышащих рыб плавательный пузырь даже видоизменился в ячеистое легкое, поэтому они могут дышать не только в воде, но и на воздухе.

Описывая дыхательную систему рыб, обычно рассматривают строение их жаберного аппарата, который находится в области глотки. Жабры состоят из жаберных щелей, поддерживающих их жаберных дуг, жаберных лепестков и жаберных тычинок. У костных рыб обязательной структурой дыхательной системы является еще и пара жаберных крышек. Они защищают жабры от попадания туда посторонних частиц. Защитную функцию выполняют и жаберные тычинки. Они обращены в сторону глотки и предохраняют тонкие и нежные жаберные лепестки от попадания в них частиц со стороны глотки. Газообмен же осуществляется в жаберных лепестках. Поэтому их можно считать самой важной частью дыхательной системы рыб. У многих высокоразвитых в эволюционном плане рыб жаберные лепестки как бы ветвятся (на первичных жаберных лепестках перпендикулярно располагаются вторичные жаберные пластинки). Это увеличивает общую поверхность лепестков, а значит и площадь тела рыбы, на которой происходит газообмен.

К дыхательной системе рыб можно отнести еще и сеть кровеносных сосудов, которые приносят венозную кровь к жабрам и отводят уже артериальную кровь от жабр. В жаберных лепестках кровеносные сосуды распадаются на сеть мелких капилляров, находящихся близко к поверхности. Именно здесь и происходит газообмен (в кровь из воды поступает кислород, а из крови в воду выделяется углекислый газ).

Механизм дыхания у костных рыб таков. При вдохе (при этом рыба приподнимает жаберные крышки) вода поступает в рот, далее она достигает глотки и при выдохе, который осуществляется за счет сокращения мышц глотки и прижимания жаберных крышек к телу, проталкивается через жаберные щели, омывая жаберные лепестки. При быстром движении костные рыбы дышат пассивно (также как хрящевые) без движения жаберных крышек и напряжения мышц: вода просто затекает в рот и вытекает из жаберных щелей.

У костных рыб нет жаберных перегородок, которые имеются у хрящевых рыб. Поэтому у костных рыб жаберные лепестки расположены прямо на жаберных дугах и омываются водой со всех сторон.

Дыхательная система костных рыб весьма эффективна в том плане, что они усваивают большую часть кислорода из воды, прошедшей через их жабры. Это важно, так как в воде содержится меньше кислорода, чем в воздухе.

Чем дышат рыбы?

Дыхание рыб. Рыбы дышат кислородом, растворенным в воде. Органы дыхания у рыб — жабры, состоящие из множества лепестков, с кровеносными сосудами. Количество жаберных лепестков у каждого вида рыб разное. Так, например, у окуня она в 30 раз больше чем у других. Наблюдая за поведением рыбы в воде, можно заметить, что рыба то открывает, то закрывает рот, тоже самое происходит и с жабрами, если жабры открываются – рот у рыбы закрывается, и наоборот. Таким образом, рыба, заглатывая воду, закрывает рот, вода проходит в жаберную полость и через жаберную щель вытекает наружу. Именно кровеносные сосуды жаберных лепестков и служат рыбе для обогащения крови кислородом.

Оглавление

— Чем дышат рыбы ↓
— Когда усиливается клев рыбы? ↓

У каждого вида рыб существует свой «минимум» содержания кислорода в воде. Если этот порог ниже, чем должен быть, рыбы становятся вялыми, неактивными и вовсе погибают (это так называемые заморы). Некоторые рыбы (карась и др.) при отсутствии кислорода в воде заглатывают и атмосферный воздух. В дыхательной функции, например, окуня может участвовать и плавательный пузырь, пронизанный сетью капиллярных сосудов. А вот у сома и линя есть дополнительное кожное дыхание. Обогащение воды кислородом происходит в основном из атмосферного воздуха и зависит от многих факторов: температуры воды, величины водоема, наличие ключей и родников, подземных вод, а также перемешивания различных слоев воды.

1. Дыхательная система у рыб

Эволюция рыб привела к появлению жаберного аппарата, увеличению дыхательной поверхности жабр, а отклонение от основной линии развития – к выработке приспособлений для использования кислорода воздуха. Большинство рыб дышит растворенным в воде кислородом, но есть виды, приспособившиеся частично и к воздушному дыханию (двоякодышащие, прыгун, змееголов и др. ).

Основные органы дыхания. Основным органом извлечения кислорода из воды являются жабры.

Форма жабр разнообразна в зависимости от видовой принадлежности и подвижности: это или мешочки со складочками (у рыбообразных), или пластинки, лепестки, пучки слизистой, имеющие богатую сеть капилляров. Все эти приспособления направлены на создание наибольшей поверхности при наименьшем объёме. дыхательный система рыба жаберный

У костистых рыб жаберный аппарат состоит из пяти жаберных дуг, располагающихся в жаберной полости и прикрытых жаберной крышкой. Четыре дуги на внешней выпуклой стороне имеют по два ряда жаберных лепестков, поддерживаемых опорными хрящами.

Таблица 1 Дыхательная поверхность жабр (по Строганову, 1962)

Виды рыб

Масса, г

Дыхательная поверхность жабр

см2см2 / кг

Серебряный карась

10,0

16,96 1700

Камбала

135,0

889,00 6762,9

Окунь

73,0

1173,816752,1

Жаберные лепестки покрыты тонкими складками – лепесточками. В них и происходит газообмен. К основанию жаберных лепестков подходит приносящая жаберная артерия, ее капилляры пронизывают лепесточки; из них окисленная (артериальная)кровь по выносящей жаберной артерии попадает в корень аорты. Число лепесточков варьирует; на1 мм жаберного лепестка их приходится: у щуки – 15, камбалы – 28, окуня – 36. В результате полезная дыхательная поверхность жабр очень велика (табл. 1).

Более активные рыбы имеют относительно большую поверхность жабр; у окуня она почти в 2,5 раза больше, чем у камбалы.

Общая схема механизма дыхания у высших рыб представляется в следующем виде (рис.). При вдохе рот открывается, жаберные дуги отходят в стороны, жаберные крышки наружным давлением плотно прижимаются к голове и закрывают жаберные щели. Вследствие уменьшения давления вода всасывается в жаберную полость, омывая жаберные лепестки. При выдохе рот закрывается, жаберные дуги и жаберные крышки сближаются, давление в жаберной полости увеличивается, жаберные щели открываются и вода выжимается через них наружу. При плавании рыбы ток воды может создаваться за счет движения с открытым ртом.

Рис 1. Механизм дыхания взрослой рыбы: А – вдох; Б – выдох (по Никольскому, 1974)

В капиллярах жаберных лепесточков из воды поглощается кислород (он связывается гемоглобином крови) и выделяются двуокись углерода, аммиак, мочевина. Большую роль играют жабры и в водно-солевом обмене, регулируя поглощение или выделение воды и солей. Замечательны приспособления для дыхания у рыб в эмбриональный период развития – у зародышей и личинок, когда жаберный аппарат ещё не сформирован, а кровеносная система уже функционирует. В это время органами дыхания служат: а) поверхность тела и система кровеносных сосудов Кювьеровы протоки, вены спинного и хвостового плавников, подкишечная вена, сеть капилляров на желточном мешке, голове, плавниковой кайме и жаберной крышке; б) наружные жабры (рис. 18). Это временные, специфические личиночные образования, исчезающие после образования дефинитивных органов дыхания. Чем хуже условия дыхания эмбрионов и личинок, тем сильнее развивается кровеносная система или наружные жабры. Поэтому у рыб, близких в систематическом отношении, но различающихся экологией нереста, степень развития личиночных органов дыхания различна.

Рис.2 Эмбриональные органы дыхания рыб: А – пелагическая рыба; Б – карп; В – вьюн (по Строганову, 1962): 1 – Кювьеровы протоки, 2 – нижняя хвостовая вена, 3 – сеть капилляров, 4 – наружные жабры

Дополнительные органы дыхания. К дополнительным приспособлениям, помогающим переносить неблагоприятные кислородные условия, относятся водное кожное дыхание, т. е. использование растворенного в воде кислорода при помощи кожи, и воздушное дыхание – использование воздуха при помощи плавательного пузыря, кишечника или через специальные добавочные органы (рис. 19).

Рис.3 Органы водного и воздушного дыхания у взрослых рыб (по Строганову, 1962): 1 – выпячивание в ротовой полости, 2 – наджаберный орган, 3, 4, 5 – отделы плавательного пузыря, 6 – выпячивание в желудке, 7 – участок поглощения кислорода в кишечнике, 8 – жабры

Дыхание живых организмов

Дыхание живых организмов

Первоначально люди называли дыханием просто вдыхание и выдыхание воздуха. Долгое время считали даже, что человек никак не изменяет состав воздуха при дыхании, и вообще вдыхает воздух, только чтобы охладить «перегретые» лёгкие. Чтобы опровергнуть эту точку зрения, английский натуралист Роберт Гук провёл любопытный опыт : предлагал членам Королевского общества дышать воздухом из герметичного пакета, снова и снова вдыхая использованный воздух. Несмотря на свою убеждённость в исключительно «охлаждающей» роли дыхания, почтенные академики вскоре прекращали опыт, жалуясь на «недостаток воздуха».

Позднее стало известно, что для дыхания живым организмам необходим содержащийся в воздухе кислород. Для чего нужна непрерывная подача кислорода? Чтобы в организме шли процессы «медленного горения» (или, точнее, окисления) и выделялась энергия, необходимая для жизни.

Дыхание происходит в клетках. Поэтому самый простой тип дыхания — клеточный. Его мы встречаем у простейших водных организмов, например, у инфузории туфельки и амёбы. Растворённый в воде кислород они впитывают прямо из воды, и туда же выводится углекислый газ. Очень сходно, «напрямую» осуществляется дыхание и у некоторых многоклеточных, например, у кишечнополостных (медуз, гидры, полипов) и плоских червей.

У более сложных форм клетки, находящиеся далеко от воды, начинают «задыхаться». Появляется непрямое дыхание — дыхание через особые органы. Такие органы должны всегда оставаться влажными, чтобы впитывать кислород: у разных животных это жабры, лёгкие, трахеи.

Водные и наземные животные столкнулись с различными проблемами при дыхании. В воздухе кислорода довольно много — 21%. Зато необходимо постоянно поддерживать влажной дыхательную поверхность.

В воде дыхательная поверхность пересохнуть не может, зато растворённого кислорода здесь содержится примерно в 40 раз меньше, чем в воздухе. Поэтому, чтобы не погибнуть от удушья, например, живущие на дне морские черви должны непрерывно волнообразно покачиваться. Тогда их тела постоянно омывает свежая вода. У акул жабры извлекают из воды в полтора раза меньше кислорода, чем у костных рыб, и потому они тоже должны, чтобы не задохнуться, постоянно быть в движении.

У сухопутных животных, избравших для себя кожный тип дыхания (например, у безлёгочных саламандр, в значительной степени — у других земноводных и у дождевых червей), кожа, постоянно выделяет слизь и влагу. «Иногда, когда дождевой червь пытается переползти через каменистый участок или асфальтированную дорожку в сухую солнечную погоду, — пишут биологи

К. Вилли и В. Детье, — его органы, выделяющие слизь, оказываются не в состоянии восполнить потерю влаги в результате испарения; кожа становится сухой, червь задыхается и погибает».

Кстати, и человек дышит не только лёгкими, но и кожей, хотя кожное дыхание незначительно (1—2% общего объёма дыхания). У некоторых млекопитающих, например, лошади, кожное дыхание имеет большее значение и его доля может возрастать до 8%. Хотя перейти полностью на кожный тип дыхания, как это могут делать земноводные, звери, конечно, неспособны. У насекомых тело покрыто хитиновым панцирем, и кожное дыхание для них невозможно. Дышат они совершенно особым способом — трахейным. Трахеи насекомых это сеть тончайших разветвленных трубочек, пронизывающих всё их тело. Почти в каждом сегменте тела у насекомых есть пара дыхалец — отверстий, ведущих в систему трахей. Крупные насекомые, двигая мускулами брюшка активно вентилируют свои трахеи. Всё-таки трахейный тип дыхания — не самый совершенный, и чем больше насекомое, тем труднее воздуху поступать в глубину его тела. Это одна из причин, почему размеры насекомых имеют жестко заданный «потолок». Большинство водных животных избрали жаберный тип дыхания. Жабры — это особые разветвленные выросты тела — наружные (как, скажем, у аксолотлей) или внутренние (как у костных рыб или многих ракообразных). Чтобы не задохнуться, таким животным приходится постоянно омывать их свежей водой. Рыбы делают это так: набирают воду в рот, а затем, закрыв рот, выталкивают её через жаберные щели. Жабры густо пронизаны кровеносными сосудами: кровь разносит кислород по всему телу.

Между прочим, человек тоже может дышать не только воздухом, но и жидкостью. В опытах млекопитающие без вреда для себя часами дышали жидким перфторуглеродом. Годится для дыхания и вода — было бы в ней достаточно кислорода . Следует отметить, что жабры рыб оказываются совершенно негодным органом дыхания на суше: они быстро слипаются и их общая площадь уменьшается настолько, что рыбе, несмотря на избыток кислорода в атмосфере, начинает его не хватать.

Наземные позвоночные пользуются лёгочным типом дыхания. Они весьма оригинально решили уже упомянутую проблему поддержания дыхательной поверхности влажной. Просто разместили её внутри своего тела! В ряду от двоякодышащих рыб и земноводных вплоть до млекопитающих внутренняя поверхность лёгких непрерывно растет. Первоначальный простой «мешок» дробится на тысячи обособленных мешочков (альвеол). В результате у человека общая внутренняя поверхность лёгких возрастает до 100 кв. м.

Особого упоминания заслуживает дыхательная система птиц. Не удивительно ли, что, часто взмахивая крыльями в полёте, птица не проявляет никаких признаков «одышки», не задыхается? Оказывается, в её теле помимо лёгких есть ещё особые воздушные мешки. Они не только облегчают общий вес птицы. В момент выдоха воздух из этих мешков поступает в лёгкие. Таким образом птицы дышат и на вдохе, и на выдохе.

3. Значение дыхания и химизм процесса

На всех стадиях своего развития человек был тесно связан с окружающей его природой. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало выражать разнообразные проявления и сейчас грозит стать глобальной опасностью для человечества. Расход невосполнимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так на них строятся города и заводы. Человеку приходится все больше вмешиваться в хозяйство биосферы — той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой из которых не улучшает экологическую ситуацию на планете. Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них — аэрозольные и газообразные загрязнители промышленно-бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете. Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека.

Вызывает тревогу у экологов и продолжающееся загрязнение Мирового океана нефтью и нефтепродуктами, достигшее уже 1/5 его общей поверхности. Нефтяное загрязнение таких размеров может вызвать существенные нарушения газо- и водообмена между гидросферой и атмосферой. Не вызывает сомнений и значение химического загрязнения почвы пестицидами и ее повышенная кислотность, ведущая к распаду экосистемы. В целом все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.

Конспект НОД «Чем дышат рыбы» старшая группа

Муниципальное автономное дошкольное образовательное учреждение Детский сад «Аленка» с. Кудара муниципального образования «Кабанский район» Республики Бурятия

Конспект занятия на тему: «Чем дышат рыбы» Старшая группа

Учитель-логопед: Новолодская Марина Геннадиевна

Цель:

Создание условий для развития познавательно – исследовательской деятельности детей посредством ознакомления с обитателями озера Байкал и их средой обитания.

Задачи:

1.Познакомить детей с обитателями озера Байкал, дать общие сведения о представителях (название).

2.Дать детям представление о том, как дышат рыбы.

3. Путем наблюдения и эксперимента определить, в каком виде воздух находится в воде.

4. Способствовать развитию логического мышления, наблюдательности, внимания, умения выявлять условия жизни обитателей озера (познавательное развитие).

5.Сздать условия для побуждения детей к речевой активности (речевое развитие).

6.Способствовать развитию навыков взаимодействия детей со взрослыми и сверстниками (социально-коммуникативное развитие).

Активизация словаря:

Слова-названия рыб, эпишура, макрогектопус, названия органов дыхания рыб-жабры.

Планируемые результаты: дети узнают о том, что рыбам для жизни нужен воздух. Они дышат воздухом, имеющимся в воде, при помощи специальных органов – жабр. С помощью эксперимента дети узнают, что воздух в воде находится в виде пузырьков, он есть повсюду, во всех предметах и материалах, его легко обнаружить, если опускать предметы в воду.

Виды детской деятельности: коммуникативная, игровая, познавательно-исследовательская.

Материалы и оборудование: макет озера Байкал, макеты рыб, картинки с изображением рыб Байкала, стеклянная банка с водой, камни, аквариум с рыбами.

Содержание организованной деятельности детей

1.Организационный момент.

Дети сидят полукругом около стола, на котором расположен наглядный материал.

-Ребята, послушайте загадку:

Есть в Бурятии озеро такое,

Где вода в нём прозрачна, чиста.

Называем мы озеро — море,

Называем его мы ….Байкал.

2.Рассматривание плаката с изображением озера Байкал, рыб Байкала.

Воспитатель: дети, посмотрите это макет озера Байкал. Кто знает, где находится это озеро? (ответы детей). В Байкале живет большое количество рыб, а вы знаете, какие рыбы живут в Байкале? Попробуйте отгадать:

Серебрист, подвижен, гибок,

Он вкуснее многих рыбок

Начинается на О (омуль)

Бледно-розова, нежна

Студёна вода нужна.

А на солнце рыбка тает,

Рыбьим жиром истекает (голомянка)

Опасней всех она

Хитра, прожорлива, сильна

Притом такая злюка

Конечно это. (щука)

Одни пасутся в чистом поле,

Другие плавают на воле.

Одних по всей земле встречали,

Другие водятся в Байкале.

Широкий лоб, приличный хвост,

Как их название- вопрос!

(бычок- широколобка)

Серебрист, подвижен, гибок,

Он вкуснее многих рыбок

Даёт ухе особый вкус

Байкальский (хариус)

Перечисляем названия рыб, дети прикрепляют их на макет озера.

А еще в Байкале живут рачки, они называются эпишура, макрогектопус.

-А сейчас я вам предлагаю поиграть в игру «Рыболов».

-Кто любит рыбачить на удочку? (Дети «ловят» рыбу, вспоминая её название).

Воспитатель:

А без чего еще не могут жить рыбы (тепла, света и воздуха)?

Рыба не может жить без воздуха, так же как и человек. Как мы дышим (ответы детей)? Как дышат рыбы, мы сейчас узнаем.

Посмотрите, на голове у рыб находятся жабры, которые постоянно открываются и закрываются. Рыба заглатывает воду ртом, воздух остается в рыбке, а вода выходит через жабры.

Воспитатель предлагает посмотреть, как дышат рыбы в аквариуме

Воздух находится повсюду, но он невидим. Сейчас мы посмотрим, в каком виде воздух находится в воде.

3. Эксперимент

Дети стоят около стола, где находится банка с водой. Воспитатель показывает детям камни, спрашивает, есть ли в них воздух (ответы детей).

Предлагает внимательно смотреть на банку с водой, чтобы заметить, что будет происходить. Бросает в воду один камень, он тонет (воспитатель спрашивает, что ребята увидели, что же это за пузырьки и откуда они взялись). Поясняет, пузырьки – это воздух, он был в камне и вышел из него, когда камень попал в воду.

Педагог предлагает детям взять по одному камню и бросить в воду и понаблюдать, что происходит, отмечает появившиеся пузырьки воздуха, это то, без чего рыбы не могут жить в воде.

4. Рефлексия

О чем мы говорили сегодня на занятии?

Как дышат рыбы?

В виде чего находится воздух в воде?

Занятие окончено, спасибо за работу, мне с вами было очень интересно, до свидания.

Строение жаберного аппарата рыб. Дыхание рыб

Основной орган дыхания рыб — это жабры, которые также имеют функции выделения и осморегуляции.

Жабры расположены в жаберной полости, прикрытой жаберной крышкой.
Строение жаберного аппарата разных групп рыб может различаться: у круглоротых рыб жабры мешковидные, у хрящевых — пластинчатые, у костистых — гребенчатые.

Интересно, что вода для дыхания поступает к жабрам костистых рыб через ротовое отверстие, а не снаружи.

В процессе эволюции, жаберный аппарат рыб постоянно совершенствовался,  а площадь дыхательной поверхности жабр — увеличивалась. Большинство рыб дышит растворенным в воде кислородом, однако некоторые — частично и кислородом из воздуха.

Жаберный аппарат костистых рыб имеет  пять жаберных дуг (1 — на рис.), находящихся в жаберной полости и покрытых твердой жаберной крышкой. Четыре дуги на внешней выпуклой стороне имеют по два ряда жаберных лепестков (4 — на рис.), поддерживаемых опорными хрящами.  В другую сторону от жаберной дуги отходят жаберные тычинки (2 — на рис.), играющие фильтрующую роль: защищающие жаберный аппарат от попадания пищевых частиц (у хищников тычинки еще и дополнительно фиксируют добычу).
В свою очередь, жаберные лепестки покрыты тонкими лепесточками: в них и происходит газообмен. Число лепесточков может быть разным у разных видов рыб.

Жаберная артерия, подходящая к основанию лепестков, подносит к ним окисленную  (артериальную) кровь и обогащается кислородом (3 — сердце на рис.).

Дыхание рыб происходит следующим образом:при вдохе открывается ротовое отверстие, жаберные дуги отходят в стороны,  жаберные крышки наружным давлением плотно прижимаются к голове и закрывают жаберные щели.
Из-за разницы в  давлении вода всасывается в жаберную полость, омывая жаберные лепестки. При выдохе ротовое отверстие рыбы закрывается, жаберные дуги и жаберные крышки двигаются навстречу друг другу: давление в жаберной полости увеличивается, жаберные щели открываются, и вода выжимается через них наружу. При плавании,  рыба может создавать ток воды, двигаясь с открытым ртом.

В капиллярах жаберных лепесточков происходит газообмен и водно-солевой обмен:из воды  в кровь попадает кислород, а выделяются двуокись углерода (СО 2), аммиак, мочевина. Ввиду активного кровообращения жабры имеют ярко-розовый цвет.  Кровь в капиллярах жабр течет в направлении, противоположном току воды, что обеспечивает максимальное извлечение кислорода из воды (до 80 % растворенного в воде кислорода).

Помимо жабр рыба имеет и дополнительные органы дыхания, помогающие им переносить неблагоприятные кислородные условия:

кожа; у некоторых видов рыб, особенно живущих в мутной и бедной кислородом воде,  кожное дыхание бывает очень интенсивным: до 85% от всего поглощаемого из воды кислорода;

плавательный пузырь: особенно у двоякодышащих рыб; оказавшись вне воды, рыба может начать поглощать кислород из плавательного пузыря;

кишечник;

наджаберные органы;

специальные дополнительные органы: у лабиринтовых рыб есть лабиринт — расширенный карманообразный отдел жаберной полости, стенки которого пронизаны плотной сетью капилляров, в которых и происходит газообмен. Лабиринтовые рыбы дышат кислородом атмосферы, заглатывая его с поверхности воды, и могут обходиться без воды в течение нескольких дней. К дополнительным органам дыхания можно также отнести:  слепой вырост желудка, парный вырост в глотке и другие органы  рыб.

На рис.: 1 – выпячивание в ротовой полости, 2 – наджаберный орган, 3, 4, 5 – отделы плавательного пузыря, 6 – выпячивание в желудке, 7 – участок поглощения кислорода в кишечнике, 8 – жабры.

Самцам рыб требуется больше кислорода чем самкам.  Ритм дыхания рыб в первую очередь определяется содержанием  кислорода в воде, а также концентрацией диоксида углерода, температурой, pH и другими факторами. При этом чувствительность рыб к недостатку кислорода в воде и крови  намного больше, чем к избытку диоксида углерода (СО 2).

Практическое руководство по заболеваниям тепловодных рыб в Центральной и Восточной Европе, на Кавказе и в Центральной Азии

%PDF-1. 6
%
1 0 obj
>
endobj
6 0 obj

/ModDate (D:20200828130123+02’00’)
/Producer (Acrobat Distiller 20.0 \(Windows\))
/Title
>>
endobj
2 0 obj
>
stream
application/pdf

  • FAO
  • Практическое руководство по заболеваниям тепловодных рыб в Центральной и Восточной Европе, на Кавказе и в Центральной Азии
  • 2020-08-28T13:00:32+02:00Microsoft® Word 20162020-08-28T13:01:23+02:002020-08-28T13:01:23+02:00Acrobat Distiller 20.0 (Windows)uuid:f10bfe0a-28e7-4b1f-bebf-82766cf88d49uuid:40d9a75c-954a-46b1-af96-b8f61ffe028f


    endstream
    endobj
    3 0 obj
    >
    endobj
    4 0 obj
    >
    endobj
    5 0 obj
    >
    endobj
    7 0 obj
    >
    endobj
    8 0 obj
    >
    endobj
    9 0 obj
    >
    endobj
    10 0 obj
    >
    endobj
    11 0 obj
    >
    stream
    hXKoGأTth@k98=HUSFѿߏڗ”˹Ն#ΐ~n~{D-KR*|}3X_:onlD5 ߾/Pc(|~”{#K”IV$m߼(\Nl,X:BT1h4D!RU?/iʼn%d:VUZ{ 7XΘ8@)pQQO \c‡y#D0/+~oQfa’Y6٤ HBTXjSgQ+;(kI>6 j#5`A…”ٌ4`h&

    Костные рыбы

    Представители костных рыб имеют костный или костно-хрящевый скелет. По старой систематике костных рыб выделяли в ранге класса, в котором было четыре подкласса: хрящекостные (осетровые), лучеперые (подавляющее большинство рыб), двоякодышащие (протоптерус), кистеперые (латимерия). По новой систематике костные рыбы — это группа, включающая два класса: лучеперые и лопастеперые рыбы.

    Костные рыбы появились приблизительно в девоне. На сегодняшний день их около 30 тысяч видов.

    Рыбы в процессе эволюции обзавелись множеством прогрессивных черт строения, которые позволили им приспособиться к разнообразным условиям водной жизни, а следовательно, рыбы многообразны по условиям жизни и форме тела.

    Кожа костных рыб

    Наружный покров рыб образует эпидермис (многослойный эпителий) и дерма (соединительная ткань). В эпидермисе есть железы, выделяющие слизь, которая уменьшает трение тела о воду при движении рыбы.

    Чешуя костная. Это отличает костных рыб от хрящевых, у которых чешуя плакоидная (имеет иное происхождение и строение).

    В коже рыб есть пигментные клетки, обуславливающие окраску тела. Некоторые виды рыб могут менять свою окраску, приспосабливаясь к окружающему фону.

    Скелет рыбы

    Скелет рыб составляет позвоночник, мозговой череп, висцеральный скелет, скелет парных конечностей и их поясов.

    Также как у хрящевых у костных рыб позвоночник делится на туловищный и хвостовой отделы.

    От поперечных отростков тел позвонков отходят ребра. Ребра оканчиваются свободно, они служат защитой внутренним органам.

    Лучи парных плавников костные, соединены с костями поясов конечностей. Плавник движется относительно своего пояса как единый рычаг. Пояса конечностей костной рыбы лежат в мягких тканях свободно.

    Мышечная система сохраняет метамерное строение, однако более сложное, чем у хрящевых рыб. Мышцы крепятся к костям скелета.

    Плавают рыбы за счет движения хвостового плавника. Парные конечности — грудные и брюшные плавники — выполняют функцию рулей глубины.

    Нервная система и органы чувств рыб

    Спинной мозг рыб находится в канале, образованном верхними дугами позвонков. Таким образом спинной мозг хорошо защищен.

    Головной мозг защищен черепной коробкой и состоит из пяти отделов: переднего мозга с обонятельными долями, промежуточного и среднего мозга, мозжечка, продолговатого мозга. Наиболее развиты у костных рыб мозжечок и средний мозг. Первый отвечает за координацию движений, а во втором находятся зрительные центры.

    В глазах находится шаровидный хрусталик, роговица утолщена. Аккомодация достигается за счет движения хрусталика, а не изменения его формы (как, скажем, у млекопитающих). Рыбы видят в даль обычно до 15 м, т. е. их хрусталик приспособлен для зрения на близком расстоянии. Такое приспособление зрения в процессе эволюции обусловлено низкой прозрачностью воды. Глаза имеют веки.

    Ноздри ведут в замкнутые обонятельные мешки. Там расположены обонятельные рецепторы.

    Хорошо развиты органы химического чувства (обоняния и вкуса). Вкусовые почки у костных рыб находятся не только в ротовой полости, но и в различных местах кожи тела.

    Орган слуха и равновесия состоит из внутреннего уха, включающего три полукружных канала (орган равновесия), и полого мешочка, который воспринимает звуковые колебания. Благодаря плотности воды звуковые волны передаются через кости черепа и достигают органов слуха (другими словами, во внешнем отверстии нет необходимости). Рыбы могут издавать звуки (скрип, щелчки). Такие звуки выполняют роль сигналов при поиске пищи и во время размножения. Звуки издаются с помощью трения зубов, костей, при изменении объема плавательного пузыря.

    Осязательные клетки у рыб расположены по всей поверхности тела.

    Орган боковой линии

    У рыб имеется уникальный орган боковой линии. Он состоит из чувствительных клеток, которые расположены на дне желобков или в каналах на теле рыбы. Эти каналы или желобки имеют отверстия во внешнюю среду. Чувствительные клетки органа боковой линии имеют реснички. Каналы тянутся по обеим сторонам всего тела рыбы.

    Функция органа боковой линии — это восприятие колебаний воды. С помощью боковой линии рыбы определяют скорость и направление течения, наличие предметов рядом и даже колебания напряженности магнитных и электрических полей.

    Пищеварительная система рыб

    В ротовой полости костных рыб имеются недифференцированные зубы. Зубы могут находиться не только на челюстных, но и небных и некоторых других костях. Зубы рыб выполняют лишь функции захвата и удержания добычи, но не измельчают еду. Рыбы просто заглатывают пищу. Слюнных желез у них нет.

    За ротовой полостью идет глотка и пищевод, открывающийся в желудок. Желудочный сок содержит соляную кислоту и пепсин, которые частично расщепляют пищу. Дальнейшее переваривание происходит в кишечнике с помощью секретов печени и поджелудочной железы. У растительноядных видов костных рыб в кишечнике обитают симбиотические простейшие и бактерии, которые выделяют ферменты, способствующие перевариванию пищи.

    Мальки рыб питаются планктоном. Пища взрослых костных рыб разнообразна, многие всеядны.

    Плавательный пузырь

    Плавательный пузырь в процессе эмбрионального развития костной рыбы образуется как вырост на спинной стороне кишки в области будущего пищевода. У ряда рыб пищевод и плавательных пузырь сохраняют сообщение между собой и во взрослом состоянии.

    Плавательный пузырь, выполняя функцию гидростатического органа, позволяет костным рыбам находиться наплаву без всяких мышечных усилий. Это происходит за счет изменения объема газов в пузыре. Кровь капилляров стенок пузыря поглощает из него или выделяет в него газ. Когда пузырь увеличивается, общая плотность рыбы уменьшается, и она всплывает.

    У всех хрящевых рыб плавательного пузыря нет. Среди костных рыб его нет у скумбриевых и многих донных видов.

    Кроме своей основной функции, плавательный пузырь частично участвует в дыхании.

    Дыхательная система костных рыб

    У костных рыб от 5 до 7 пар жаберных щелей, поддерживаемых жаберными дугами и прикрытых с каждой стороны одной жаберной крышкой.

    В процессе эмбрионального развития жаберные отверстия образуются в переднем отделе пищеварительной трубки.

    На жаберных дугах расположены жаберные лепестки, в которых находится густая сеть мелких капилляров. Здесь происходит газообмен.

    Движение воды и омывание жаберных лепестков обеспечивается движениями рта и жаберных крышек. Костные рыбы засасывают воду через рот и на выдохе прогоняют ее через жаберные щели. При этом вода омывает жаберные лепестки.

    Кроме дыхания жабрами ряд рыб частично осуществляют газообмен с помощью кожи. Также могут заглатывать воздух, в этом случае кислород всасывается кишечником.

    Кровеносная система рыб

    Сердце рыб двухкамерное (одно предсердие и один желудочек), следовательно, имеется только один круг кровообращения. Через сердце проходит венозная кровь, которая затем направляется в жабры. Оттуда уже артериальная кровь через выносящие жаберные артерии попадает в спинную аорту и по отходящим от нее сосудам разносится по тканям. Отдав кислород, кровь по венам собирается в предсердие.

    Таким образом, приносящие жаберные артерии доставляют венозную кровь от сердца, а выносящие жаберные артерии с артериальной кровью объединяются в спинную аорту.

    Сердце у рыб сокращается редко и слабо. Так у речного окуня происходит 20 сокращений в минуту. Следовательно, у рыб достаточно медленный обмен веществ. Рыбы холоднокровны (температура их тела зависит от температуры окружающей среды).

    Выделительная система

    Выделительная система рыб представлена двумя туловищными почками, которые имеют лентовидную форму.

    У большинства костных рыб конечным веществом распада белков является аммиак. Он ядовит и для вывода его из организма требуется много воды.

    Моча из почек через мочеточники поступает в мочевой пузырь, откуда выходит через самостоятельное отверстие. Частично продукты распада у рыб удаляются через жабры в процессе дыхания.

    Размножение костных рыб

    Подавляющее большинство рыб раздельнополы. Однако в качестве исключения имеются гермафродитные виды, у которых половые железы попеременно выполняют функции то семенников, то яичников. А вот у морского окуня разные части половых желез одновременно образуют сперматозоиды и яйцеклетки.

    Размножение только половое. У костных рыб оплодотворение почти всегда наружное.

    Для рыб характерна большая плодовитость, так как при внешнем оплодотворении много икры не оплодотворяется. Кроме того гибнет много мальков. У рыб, проявляющих заботу о потомстве, плодовитость ниже.

    Некоторые виды (лососевые и др.) размножаются один раз в жизни, после чего погибают.

    Индивидуальное развитие происходит с неполным превращением. Личинки рыб называются мальками.

    Пороки развития артериальных жаберных дуг у человека. Дыхательная система рыб Что такое жаберные дуги

    Главной частью дыхательной системы рыб являются жабры. Именно благодаря им в кровь поступает основная масса кислорода, а из крови выделяется углекислый газ. Однако газообмен у рыб происходит не только через жабры. У всех видов в дыхании принимает участие кожа. Но при этом у видов, обитающих в водоемах с большим содержанием кислорода, дыхание через кожу незначительно. А у рыб, которые живут в условиях дефицита кислорода (сомы, карпы, угри), кожный газообмен может занимать существенную часть дыхания. Также у костных рыб небольшой газообмен происходит в плавательном пузыре. У двоякодышащих рыб плавательный пузырь даже видоизменился в ячеистое легкое, поэтому они могут дышать не только в воде, но и на воздухе.

    Описывая дыхательную систему рыб, обычно рассматривают строение их жаберного аппарата, который находится в области глотки. Жабры состоят из жаберных щелей
    , поддерживающих их жаберных дуг
    , жаберных лепестков
    и жаберных тычинок
    . У костных рыб обязательной структурой дыхательной системы является еще и пара жаберных крышек
    . Они защищают жабры от попадания туда посторонних частиц. Защитную функцию выполняют и жаберные тычинки. Они обращены в сторону глотки и предохраняют тонкие и нежные жаберные лепестки от попадания в них частиц со стороны глотки. Газообмен же осуществляется в жаберных лепестках. Поэтому их можно считать самой важной частью дыхательной системы рыб. У многих высокоразвитых в эволюционном плане рыб жаберные лепестки как бы ветвятся (на первичных жаберных лепестках перпендикулярно располагаются вторичные жаберные пластинки). Это увеличивает общую поверхность лепестков, а значит и площадь тела рыбы, на которой происходит газообмен.

    К дыхательной системе рыб можно отнести еще и сеть кровеносных сосудов, которые приносят венозную кровь к жабрам и отводят уже артериальную кровь от жабр. В жаберных лепестках кровеносные сосуды распадаются на сеть мелких капилляров, находящихся близко к поверхности. Именно здесь и происходит газообмен (в кровь из воды поступает кислород, а из крови в воду выделяется углекислый газ).

    Механизм дыхания у костных рыб таков. При вдохе (при этом рыба приподнимает жаберные крышки) вода поступает в рот, далее она достигает глотки и при выдохе, который осуществляется за счет сокращения мышц глотки и прижимания жаберных крышек к телу, проталкивается через жаберные щели, омывая жаберные лепестки. При быстром движении костные рыбы дышат пассивно (также как хрящевые) без движения жаберных крышек и напряжения мышц: вода просто затекает в рот и вытекает из жаберных щелей.

    У костных рыб нет жаберных перегородок, которые имеются у хрящевых рыб. Поэтому у костных рыб жаберные лепестки расположены прямо на жаберных дугах и омываются водой со всех сторон.

    Дыхательная система костных рыб весьма эффективна в том плане, что они усваивают большую часть кислорода из воды, прошедшей через их жабры. Это важно, так как в воде содержится меньше кислорода, чем в воздухе.

    Эволюция сердца
    .

    Сердце развивается из мезодермы. На низшем этапе развития кровеносной системы сердце отсутствует, и его функцию осуществляют круп­ные сосуды. У ланцетника в замкнутой кровеносной системе функцию сердца выполняет брюшная аорта. У водных позвоночных появляется сердце, ĸᴏᴛᴏᴩᴏᴇ имеет одно предсердие и один желудочек. В серд­це течёт только венозная кровь. У наземных животных сердце получает венозную и артериальную кровь. Появляется перегородка. Сердце становится сначала трёхкамерным (у амфибий и пресмыкающихся), а затем четырёхкамерным. Перегородка развита не до конца. У высших наземных позвоночных сердце разделœено на четыре камеры – два предсердия и два желудочка. Артериальная и венозная кровь не смешана.

    Эволюция артериальных жаберных дуг

    В связи с тем что основные артериальные сосуды у млекопитающих и человека формируются на базе закладок жаберных артерий, проследим их эволюцию в филогенетическом ряду позвоночных. В эмбриогенезе абсолютного большинства позвоночных закладывается шесть пар артериальных жаберных дуг, соответствующих шести парам висцеральных дуг черепа. В связи с тем что две первые пары висцеральных дуг включаются в состав лицевого черепа, две первые артериальные жаберные дуги быстро редуцируются. Оставшиеся четыре пары функционируют у рыб как жаберные артерии. У наземных позвоночных 3-я пара жаберных артерий теряет связь с корнями спинной аорты и несет кровь к голове, становясь сонными артериями. Сосуды 4-й пары достигают наибольшего развития и вместе с участком корня спинной аорты во взрослом состоянии становятся дугами аорты – основными сосудами большого круга кровообращения.

    У земноводных и пресмыкающихся оба сосуда развиты и принимают участие в кровообращении. У млекопитающих также закладываются оба сосуда 4-й пары, а позже правая дуга аорты редуцируется таким образом, что от нее остается лишь небольшой рудимент – плечеголовной ствол. Пятая пара артериальных дуг в связи с тем, что она функционально дублирует четвертую, редуцируется у всех наземных позвоночных, кроме хвостатых амфибий. Шестая пара, которая снабжает венозной кровью кроме жабр еще и плавательный пузырь, у кистеперых рыб становится легочной артерией.

    В эмбриогенезе человека рекапитуляции артериальных жаберных дуг происходят с особенностями: все шесть пар дуг никогда не существуют одновременно. В то время, когда две первые дуги закладываются, а затем перестраиваются, последние пары сосудов еще не начинают формироваться. Кроме того, пятая артериальная дуга уже закладывается в виде рудиментарного сосуда, присоединенного обычно к 4-й паре, и редуцируется очень быстро.

    Кровеносные системы

    Основа для дальйшей эволюции кров. системы, которая характерна для Хордовых, является кров. сис. Бесчерепных – Ланцетника.

    У ланцетника кровеносная система наиболее проста.Она замкнута. Круг кровообращения один. Ф-цию сердца выполняет брюшная аорта. По брюшной аорте венозная кровь поступает в приносящие жаберные артерии, которые по количеству соответствуют числу межжаберных перегородок (до 150 пар), где и обогащается кислородом.

    По выносящим жаберным артериям кровь поступает в корни спинной аорты, расположенные симметрично с двух сторон тела. Они продолжаются как вперед, неся артериальную кровь к головному мозгу, так и назад. Передние ветви этих двух сосудов являются сонными артериями. На уровне заднего конца глотки задние ветви образуют спинную аорту, которая разветвляется на многочисленные артерии, направляющиеся к органам и распадающиеся на капилляры.

    После тканевого газообмена кровь поступает в парные передние или задние кардинальные вены, расположенные симметрично. Передняя и задняя кардинальные вены с каждой стороны впадают в кювьеров проток. Оба кювьеровых протока впадают с двух сторон в брюшную аорту. От стенок пищеварительной системы венозная кровь оттекает через подкишечную вену в воротную систему печени и печеночную вену, по которой кровь поступает в брюшную аорту.

    Таким образом, несмотря на простоту кровеносной системы в целом, уже у ланцетника имеются основные артерии, характерные для позвоночных, в том числе для человека: это брюшная аорта, преобразующаяся позже в сердце, восходящую часть дуги аорты и корень легочной артерии; спинная аорта, становящаяся позже собственно аортой, и сонные артерии. Основные вены, имеющиеся у ланцетника, также сохраняются у более высокоорганизованных животных.

    Более активный образ жизни рыб предполагает более интенсивный метаболизм. В связи с этим на фоне олигомеризации их артериальных жаберных дуг в количестве до четырех пар отмечается высокая степень дифференцировки: жаберные артерии распадаются на капилляры в жабрах. В процессе интенсификации сократительной функции брюшной аорты часть ее преобразовалась в двухкамерное сердце, состоящее из предсердия и желудочка, венозный синус и артериальный конус. В остальном кровеносная система рыб соответствует строению ее у ланцетника.

    В связи с выходом земноводных на сушу и появлением легочного дыхания у них возникает два круга кровообращения. Соответственно этому в строении сердца и артерий появляются приспособления, направленные на разделение артериальной и венозной крови. Перемещение земноводных в основном за счет парных конечностей, а не хвоста обусловливает изменения в венозной системе задней части туловища.

    Сердце амфибий расположено каудальнее, чем у рыб, рядом с легкими; оно трехкамерное, но, как и у рыб, от правой половины единственного желудочка начинается единственный сосуд – артериальный конус, разветвляющийся последовательно на три пары сосудов: кожно-легочные артерии, дуги аорты и сонные артерии. Как и у всех более высокоорганизованных классов, в правое предсердие впадают вены большого круга, несущие венозную кровь, в левое – малого с артериальной кровью. При сокращении предсердий в желудочек, внутренняя стенка которого снабжена большим количеством мышечных перекладин, одновременно попадают обе порции крови. Полного их смешения из-за своеобразного строения стенки желудочка не происходит, поэтому при его сокращении первая порция венозной крови поступает в артериальный конус и с помощью спирального клапана, находящегося там, направляется в кожно-легочные артерии. Кровь из середины желудочка, смешанная, поступает таким же образом в дуги аорты, а оставшееся небольшое количество артериальной крови, последней попадающей в артериальный конус, направляется в сонные артерии.

    Две дуги аорты, несущие смешанную кровь, огибают сердце и пищевод сзади, образуя спинную аорту, снабжающую все тело, кроме головы, смешанной кровью. Задние кардинальные вены сильно редуцируются и собирают кровь только с боковых поверхностей туловища. Функционально их замещает возникшая заново задняя полая вена, собирающая кровь в основном из задних конечностей. Она располагается рядом со спинной аортой и, находясь позади печени, вбирает в себя печеночную вену, которая у рыб впадала непосредственно в венозный синус сердца. Передние кардинальные вены, обеспечивая отток крови от головы, называют теперь яремными венами, а кювьеровы потоки, в которые они впадают вместе с подключичными венами, – передними полыми венами.

    В кровеносной системе пресмыкающихся возникают следующие прогрессивные изменения: в желудочке их сердца имеется неполная перегородка, затрудняющая смешение крови; от сердца отходит не один, а три сосуда, образовавшихся в результате разделения артериального ствола. Из левой половины желудочка начинается правая дуга аорты, несущая артериальную кровь, а из правой -легочная артерия с венозной кровью. Из середины желудочка, в области неполной перегородки, начинается левая дуга аорты со смешанной кровью. Обе дуги аорты, как и у предков, срастаются позади сердца, трахеи и пищевода в спинную аорту, кровь в которой смешанная, но более богата кислородом, чем у земноводных, в связи с тем что до слияния сосудов только по левой дуге течет смешанная кровь. Кроме того, сонные и подключичные артерии с обеих сторон берут начало от правой дуги аорты, в результате чего артериальной кровью снабжается не только голова, но и передние конечности. В связи с появлением шеи сердце располагается еще более каудально, чем у земноводных. Венозная система пресмыкающихся принципиально не отличается от системы вен земноводных.

    Млекопитающие.

    Прогрессивные изменения кровеносной системы млекопитающих сводятся к полному разделению венозного и артериального кровотоков. Это достигается, во-первых, завершенной четырехкамерностью сердца и, во-вторых, редукцией правой дуги аорты и сохранением только левой, начинающейся от левого желудочка. В результате все органы млекопитающих снабжаются артериальной кровью. В венах большого круга кровообращения также обнаруживаются изменения: остается лишь одна передняя полая вена, располагающаяся справа.

    В эмбриональном развитии млекопитающих и человека рекапитулируют закладки сердца и основных кровеносных сосудов предковых классов.Сердце закладывается на первых этапах развития в виде недифференцированной брюшной аорты, которая за счет изгибания, появления в просвете перегородок и клапанов, становится последовательно двух-, трех- и четырехкамерным. Однако рекапитуляции здесь неполны в связи с тем, что межжелудочковая перегородка млекопитающих формируется иначе и из другого материала по сравнению с рептилиями. Поэтому можно считать, что четырехкамерное сердце млекопитающих формируется на базе трехкамерного сердца, а межжелудочковая перегородка является новообразованием, а не результатом доразвития перегородки пресмыкающихся. Таким образом, в филогенезе сердца позвоночных проявляется девиация: в процессе морфогенеза этого органа у млекопитающих рекапитулируют ранние филогенетические стадии, а затем развитие его идет в ином направлении, характерном лишь для этого класса.

    Интересно, что место закладки и положение сердца в филогенетическом ряду позвоночных полностью рекапитулируют у млекопитающих и человека. Так, закладка сердца у человека осуществляется на 20-е сутки эмбриогенеза, как у всех позвоночных, позади головы. Позже за счет изменения пропорций тела, появления шейной области, смещения легких в грудную полость осуществляется и перемещение сердца в переднее средостение. Нарушения развития сердца могут выражаться как в возникновении аномалий строения, так и места его положения. Возможно сохранение к моменту рождения двухкамерного сердца. Этот порок совершенно не совместим с жизнью.

    Пороки развития аретериальных жаберных дуг у человека.

    Из атавистических пороков развития сосудов: с частотой 1 случай на 200 вскрытий детей, умерших от врожденных пороков сердца, встречается персистирование обеих дуг аорты 4-й пары. При этом обе дуги, так же как у земноводных или пресмыкающихся, срастаются позади пищевода и трахеи, образуя нисходящую часть спинной аорты. Порок проявляется нарушением глотания и удушьем. Несколько чаще (2,8 случая на 200 вскрытий) встречается нарушение редукции правой дуги аорты с редукцией левой. Эта аномалия часто клинически не проявляется.

    Наиболее частый порок (0,5-1,2 случая на 1000 новорожденных) – персистирование артериального, или боталлова, протока, представляющего собой часть корня спинной аорты между 4-й и 6-й парами артерий слева. Проявляется сбросом артериальной крови из большого круга кровообращения в малый. Очень тяжелый порок развития – персистирование первичного эмбрионального ствола, в результате которого из сердца выходит только один сосуд, располагающийся обычно над дефектом в межжелудочковой перегородке. Он обычно заканчивается смертью ребенка. Нарушение дифференцировки первичного эмбрионального ствола может привести к такому пороку развития, как транспозиция сосудов – отхождение аорты от правого желудочка, а легочного ствола – от левого, что встречается в 1 случае на 2500 новорожденных. Этот порок обычно несовместим с жизнью.

    Рекапитуляции проявляются и в эмбриональном развитии крупных вен человека. При этом возможно формирование атавистических пороков развития. Среди пороков развития венозного русла укажем на возможность персистирования двух верхних полых вен. Если обе они впадают в правое предсердие, аномалия клинически не проявляется. При впадении левой полой вены в левое предсердие происходит сброс венозной крови в большой круг кровообращения. Иногда обе полые вены впадают в левое предсердие. Такой порок несовместим с жизнью. Данные аномалии встречаются с частотой 1% от всех врожденных пороков сердечно-сосудистой системы.

    Очень редкая врожденная аномалия – неразвитие нижней полой вены. Отток крови от нижней части туловища и ног осуществляется в этом случае через коллатерали непарной и полунепарной вен, являющихся рудиментами задних кардинальных вен.

    От жаберных лепестков, в свою очередь, отходят дыхательные (респираторные) складочки. Собственно в них кровь и обогащается кислородом. Вода омывает дыхательные складочки так, как это показано большими стрелками на рисунке. Малыми стрелками показано направление движения крови в кровеносных сосудах жаберных лепестков и дыхательных складочек.

    Теперь рассмотрим что же видно на фотографии из статьи о .


    Фото 1.

    Стрелками отмечены детали, на которые надо обратить внимание. На фото видны четыре жаберных лепестка. Основу жаберных лепестков составляют хрящевые жаберные лучи (Стрелки с голубой окантовкой). Они и позволяют нам судить о расположении жаберных лепестков. Многочисленные дыхательные складочки (Стрелки с красной окантовкой) отходят под острым углом от жаберных лучей. Видно их плохо, так как всё покрыто толстым слоем слизи.

    Слизь не даёт воде омывать дыхательные складочки, поэтому газообмен между водой и кровью сильно затруднен и рыба задыхается.

    Использованы рисунки из учебников: Н.В.Пучков “Физиология рыб”, Москва 1954 г., и Л.И. Грищенко и др. “Болезни рыб и основы рыбоводства”, Москва, 1999 г.
    Фото В. Ковалёва.

    Способ дыхания у рыб бывает двух типов: воздушный и водный. Данные различия возникли и совершенствовались в процессе эволюции, под влиянием различных внешних факторов. Если рыбы имеют только водный тип дыхания, то этот процесс у них осуществляется при помощи кожи и жабр. У рыб с воздушным типом дыхательный процесс осуществляется при помощи наджаберных органов, плавательного пузыря, кишечника и через кожу. Главными конечно, являются жабры, а остальные – вспомогательные. Однако не всегда вспомогательные или дополнительные органы выполняют второстепенную роль, чаще всего они и являются самыми важными.

    Разновидности дыхания рыб

    Хрящевые и имеют различное строение жаберных крышек. Так, первые имеют перегородки в жаберных щелях, что обеспечивает открытие жабр наружу отдельными отверстиями. Эти перегородки покрыты жаберными лепестками, устланными, в свою очередь, сетью кровеносных сосудов. Такое строение жаберных крышек хорошо видно на примере скатов и акул.

    В то же время у костистых видов данные перегородки редуцированы за ненадобностью, так как жаберные крышки подвижны сами по себе. Жаберные дуги рыб выполняют функцию опоры, на которых и находятся жаберные лепестки.

    Функции жабр. Жаберные дуги

    Самой главной функцией жабр является, конечно же, газообмен. При их помощи поглощается кислород из воды, а в нее выделяется диоксид углерода (углекислый газ). Но немногие знают, что жабры также помогают рыбе обмениваться водно-солевыми веществами. Так, после переработки в окружающую среду выводится мочевина, аммиак, происходит солеобмен между водой и организмом рыб, и в первую очередь это касается ионов натрия.

    В процессе эволюции и видоизменения подгрупп рыб жаберный аппарат также изменялся. Так, у костистых рыб жабры имеют вид гребешков, у хрящевых они состоят из пластин, а круглоротые имеют мешковидную форму жабр. В зависимости от строения дыхательного аппарата различно и строение, а так же функции жаберной дуги рыб.

    Строение

    Жабры находятся по бокам соответствующих полостей костистых рыб и защищены крышками. Каждая жабра состоит из пяти дуг. Четыре жаберные дуги сформированы полностью, а одна – рудиментарная. С внешней стороны жаберная дуга более выпуклая, в стороны от дуг отходят жаберные лепестки, в основе которых находятся хрящевые лучи. Жаберные дуги служат опорой для крепления лепестков, которые держатся на них своим основанием своим основанием, а свободные края расходятся внутрь и наружу под острым углом. На самих жаберных лепестках находятся так называемые вторичные пластинки, которые расположены поперек лепестка (или лепесточки, как их еще называют). На жабрах имеется огромное количество лепесточков, у различных рыб их может быть от 14 до 35 на один миллиметр, при высоте не более 200 мкм. Они столь незначительного размера, что их ширина не доходит и до 20 мкм.

    Основная функция жаберных дуг

    Жаберные дуги позвоночных выполняют функцию фильтрующего механизма при помощи жаберных тычинок, расположенные на дуге, которая обращена в ротовую полость рыб. Это дает возможность задерживать во рту взвеси, находящиеся в толще воды, и различные питательные микроорганизмы.

    В зависимости о того, чем питается рыба, жаберные тычинки также видоизменились; в их основу входят костные пластины. Так, если рыба – хищник, то у нее тычинки расположены реже и находятся, ниже, а у рыб, питающихся исключительно планктоном, обитающим в толще воды, жаберные тычинки высокие и расположены гуще. У тех рыб, которые являются всеядными, тычинки имеют среднее расположение между хищниками и планктонофагами.

    Кровеносная система малого круга кровообращения

    Жабры рыб имеют ярко-розовую окраску из-за большого количества крови, обогащенной кислородом. Это обусловлено интенсивным процессом кровообращения. Кровь, которую необходимо обогатить кислородом (венозная), собирается со всего организма рыбы и по брюшной аорте поступает в жаберные дуги. Брюшная аорта разветвляется на две бронхиальные артерии, далее идет жаберная артериальная дуга, которая, в свою очередь, делится на большое количество лепестковых артерий, окутывающих жаберные лепестки, расположенные по внутреннему краю хрящевых лучей. Но и это еще не предел. Лепестковые артерии сами делятся на огромное количество капилляров, окутывая густой сеткой внутреннюю и наружную часть лепесточков. Диаметр капилляров настолько мал, что равен величине самого эритроцита, переносящего кислород по крови. Таким образом, жаберные дуги выполняют функцию опоры для тычинок, обеспечивающих газообмен.

    С другой стороны лепестков все краевые артериолы сливаются в единый сосуд, впадающий в вену, выносящую кровь, которая, в свою очередь, переходит в бронхиальную, а потом в спинную аорту.

    Если более детально рассматривать жаберные дуги рыб и проводить то лучше всего изучать продольный срез. Так будут видны не только тычинки и лепестки, но и респираторные складки, которые являются барьером между водной средой и кровью.

    Данные складки выстланы всего одним слоем эпителия, а внутри – капиллярами, поддерживающимися пилар-клетками (опорными). Барьер из капилляров и дыхательных клеток весьма уязвим к воздействию внешней среды. Если в воде есть примеси токсических веществ, эти стенки разбухают, происходит отслоение, и они утолщаются. Это чревато серьезными последствиями, так как затрудняется процесс газообмена в крови, что в конечном итоге приводит к гипоксии.

    Газообмен у рыб

    Получение кислорода рыбой происходит путем пассивного газообмена. Главным условием обогащения крови кислородом является постоянный ток воды в жабрах, а для этого необходимо, чтобы жаберная дуга и весь аппарат сохранял свою структуру, тогда и функция жаберных дуг у рыб не будет нарушена. Диффузная поверхность также должна сохранять свою целостность для правильного обогащения гемоглобина кислородом.

    Для осуществления пассивного газообмена кровь в капиллярах рыб двигается в противоположном направлении току крови в жабрах. Данная особенность способствует практически полному извлечению кислорода из воды и обогащению им крови. У некоторых особей показатель обогащения крови относительно состава кислорода в воде составляет 80%. Ток воды через жабры происходит за счет прокачивания ее через жаберную полость, при этом главную функцию выполняет движение ротового аппарата, а также жаберных крышек.

    От чего зависит частота дыхания рыб?

    Благодаря характерным особенностям можно просчитать частоту дыхания рыб, которая зависит от движения жаберных крышек. Концентрация кислорода в воде и содержание углекислого газа в крови влияют на частоту дыхания рыб. Причем эти водные животные больше чувствительны к малой концентрации кислорода, чем большому количеству диоксида углерода в крови. На частоту дыхания влияет также температура воды, рН и много других факторов.

    У рыб есть специфическая способность к извлечению посторонних веществ с поверхности жаберных дуг и с их полостей. Данную способность называют кашлем. Жаберные крышки периодически прикрываются, и при помощи обратного движения воды все взвеси, находящиеся на жабрах, вымываются током воды. Такое проявление у рыб чаще всего наблюдается, если вода загрязнена взвесями или токсическими веществами.

    Дополнительные функции жабр

    Помимо основной, дыхательной, жабры выполняют осморегулирующую и выделительную функции. Рыбы являются аммониотелическими организмами, собственно, как и все животные, обитающие в воде. Это значит, что конечным продуктом распада азота, содержащего в организме, является аммиак. Именно благодаря жабрам он выделяется из организма рыб в виде ионов аммония, при этом очищая организм. Помимо кислорода, через жабры в кровь, в результате пассивной диффузии, поступают соли, низкомолекулярные соединения, а также большое количество неорганических ионов, находящихся в толще воды. Помимо жабр, всасывание данных веществ осуществляется при помощи специальных структур.

    В это число входят специфические хлоридные клетки, выполняющие осморегулирующую функцию. Они способны перемещать ионы хлора и натрия, при этом двигаясь в направлении, противоположном большому градиенту диффузии.

    Движение ионов хлора зависит от среды обитания рыб. Так, у пресноводных особей одновалентные ионы переносятся хлоридными клетками из воды в кровь, замещая те, которые были утрачены в результате функционирования выделительной системы рыб. А вот у морских рыб процесс осуществляется в противоположном направлении: выделение происходит из крови в окружающую среду.

    Если в воде заметно увеличена концентрация вредоносных химических элементов, то вспомогательная осморегуляционная функция жабр может быть нарушена. В результате в кровь поступает не то количество веществ, которое необходимо, а гораздо в большей концентрации, что может пагубно сказаться на состоянии животных. Данная специфика не всегда несет негативный характер. Так, зная такую особенность жабр, можно бороться со многими заболеваниями рыб, внося лечебные препараты и вакцины прямо в воду.

    Кожное дыхание различных рыб

    Абсолютно все рыбы имеют способность к кожному дыханию. Вот только в какой степени оно развито – зависит от большого количества факторов: это и возраст, и условия окружающей среды, и множества других. Так, если рыба обитает в чистой проточной воде, то процент кожного дыхания незначителен и составляет всего 2-10 %, в то время как дыхательная функция эмбриона осуществляется исключительно через кожные покровы, а также сосудистую систему желчного мешочка.

    Кишечное дыхание

    В зависимости от среды обитания изменяется способ дыхания рыб. Так, тропические сомики и вьюновые рыбки активно дышат при помощи кишечника. Воздух при заглатывании попадает туда и уже с помощью густой сети кровеносных сосудов проникает в кровь. Данный способ стал развиваться у рыб в связи со специфическими условиями среды обитания. Вода в их водоемах, в связи с высокими температурами, имеет малую концентрацию кислорода, что усугубляется мутностью и отсутствием течения. В результате эволюционных преобразований рыбы в таких водоемах научились выживать, используя кислород из воздуха.

    Дополнительная функция плавательного пузыря

    Плавательный пузырь предназначен для гидростатической регуляции. Это его основная функция. Однако у некоторых видов рыб плавательный пузырь приспособлен для дыхания. Он используется как резервуар для воздуха.

    Типы строения плавательного пузыря

    В зависимости от анатомического строения все виды рыб подразделяются на:

    • открытопузырных;
    • закрытопузырных.

    Первая группа наиболее многочисленна и является основной, в то время как группа закрытопузырных рыб весьма незначительна. К ней относятся, окуневые, кефаль, треска, колюшка и др. У открытопузырных рыб, исходя из названия, плавательный пузырь открыт для сообщения с основным кишечным потоком, а у закрытопузырных, соответственно, – нет.

    Карповые также имеют специфическое строение плавательного пузыря. Он поделен на заднюю и переднюю камеры, которые соединятся узким и коротким каналом. Стенки передней камеры пузыря состоят из двух оболочек, наружной и внутренней, в то время как в задней камере отсутствует наружная.

    Выстлан плавательный пузырь одним рядом плоского эпителия, после которого находится ряд рыхлой соединительной, мышечная и слой сосудистой ткани. Плавательный пузырь имеет свойственный только ему перламутровый отблеск, который обеспечивается специальной плотной соединительной тканью, имеющее волокнистое строение. Для обеспечения прочности пузыря снаружи обе камеры покрыты упругой серозной оболочкой.

    Лабиринтовый орган

    У небольшого количества тропических рыб развит такой специфический орган, как лабиринтовый и наджаберный. К этому виду относятся макроподы, гурами, петушки и змееголовы. Образования можно наблюдать в виде изменения глотки, которая трансформируется в наджаберный орган, или же выпячивается жаберная полость (так называемый лабиринтовый орган). Главное их предназначение – возможность получения кислорода из воздуха.

    »Дыхательная система

    Дыхательная система

    Функция дыхательной системы заключается в обеспечении газообмена между рыбой и водой – процесса, необходимого для выполнения жизненно важных функций. Помимо дыхания, у костистых рыб дыхательная система выполняет другие функции, такие как осморегуляция, выведение азотистых отходов (аммония), кислотно-щелочная регуляция и детоксикация.

    РИСУНОК 1

    Основными структурами газообмена в воде являются жабры, расположенные по обе стороны от глотки (рис.1) и поддерживается жаберными костными дугами у взрослых (хрящевыми на ранних стадиях развития). Есть пять жаберных дуг, разделенных пятью жаберными щелями (см. Рис. 2 Скелетно-мышечная система). Слой эпителия, выстилающий область жаберной дуги, непрерывен со слоем глотки. У костистых рыб жаберная система ограничена снаружи крышечками с обеих сторон головы, закрывающими глазную полость. Задний край жаберной крышки имеет жаберно-стегальную перепонку, поддерживаемую лучами, которые помогают закрывать глазную полость (рис.2).

    РИСУНОК 2

    У костистых насекомых по четыре голожаберных и по одному полужабельному с каждой стороны. Каждая голобатка поддерживается жаберной дугой и состоит из двух расходящихся полужаберных ветвей, которые выступают из внешнего края жаберных дуг (рис. 3). Каждое полужаберное ветвь состоит из серии перекрывающихся нитей, которые чередуются с нитями другого полужабира той же дуги (см. Рис. 3), и содержит сложную сеть кровеносных сосудов (Система кровообращения). Каждая нить поддерживается хрящевым лучом, обеспечивающим поддержку и гибкость, и имеет поперечно-полосатые приводящие и отводящие мышцы, которые позволяют их кончикам двигаться вперед и назад.Обе стороны каждой нити имеют правильно распределенные перпендикулярные складки, называемые ламелями. Они расположены так, что те, которые находятся на верхней стороне нити, чередуются с таковыми на нижней стороне соседней нити, образуя сетку вдоль всего полужаберного ответвления. Пластинка – это функциональная единица дыхательной системы, так как это место обмена растворенных в воде газов и газов, переносимых эритроцитами. Количество и размер этих ламелей определяют дыхательную поверхность, которая может значительно варьироваться в зависимости от привычек вида.

    РИСУНОК 3

    Кровь, перекачиваемая сердцем, попадает в жабры и проходит через сложную сеть кровеносных сосудов. Жаберные дуги имеют систему параллельных сосудов (см. Рис. 3), афферентные жаберные артерии, исходящие из брюшной аорты, и эфферентные жаберные артерии, которые открываются в дорсальную аорту. Афферентная жаберная артерия ведет к каждой нити, и эти ветви называются афферентными нитевидными артериями. Они проходят вдоль одного края нити и разветвляются на сеть капилляров в каждой ламелле.Эти капилляры проходят между сократительными опорными клетками, называемыми «опорными клетками». Гибкость мембран эритроцитов позволяет крови течь через эти узкие капилляры. Эти капилляры сходятся на противоположной стороне одной и той же нити и открываются в артерию эфферентной нити, которая проходит по противоположному краю и открывается в эфферентную жаберную артерию. Таким образом, капиллярная система ламелей обеспечивает большую поверхность воздействия воды, усиливая газообмен. Ламеллы представляют собой складки в форме лоскута, выступающие из нитей и состоящие из капиллярной сети, полностью покрытой эпителием. Многочисленные столбчатые клетки распределены среди кровеносных капилляров, придавая ламелле определенную структуру, а также удерживая вместе противоположные стороны эпителиального покрытия (рис. 4).

    РИСУНОК 4

    Эпителий ламеллы состоит из тонкого двойного клеточного слоя, разделенного пространством, в котором можно увидеть мигрирующие воспалительные клетки и / или резидентные макрофаги. Внутренний слой эпителиальных клеток находится на базальной мембране, которая на противоположной стороне контактирует с увеличенными концами столбчатых клеток.Базальная мембрана пересекает противоположные внутренние поверхности ламели в канавках, расположенных внутри ячеек столба, тем самым обеспечивая дополнительную поддержку при растяжении. Внутренний слой эпителия образован довольно недифференцированными клетками, в то время как внешний слой образован плоскими эпителиальными клетками, которые составляют большую часть эпителиальной поверхности и имеют микровыступы, увеличивающие респираторную поверхность и способствующие удержанию слизи (рис. 4). Есть также слизистые, хлоридные и, в меньшей степени, зернистые и нейроэпителиальные клетки.Слизистые клетки выделяют защитный слой слизи, который образует поверхность контакта между рыбой и водой, действуя как физический, химический и иммунологический барьер. Хлоридные клетки ответственны за выведение хлоридов и трансэпителиальный поток других ионов. Как слизистых, так и хлоридных клеток больше у основания ламелей и чаще у морских рыб, чем у пресноводных.

    РИСУНОК 5

    Зачатки жабр, оперкулярные или подъязычные полуожабы расположены дорсально на нижней стороне жаберной крышки (рис.5 и 6). Они могут быть свободными или выстланы слизистой оболочкой глазной полости. Хотя у них есть дыхательная функция в начале эмбрионального развития, у взрослых ее роль неясна, но они получают насыщенную кислородом кровь из аорты (поэтому их также называют псевдожаблями) и сообщаются посредством сосудов с сеткой сосудистой оболочки глаза. глаз. Считается, что он может играть роль в кровоснабжении сетчатки, а также в осморегуляции и восприятии. Строение глазничного полужаба отсутствует лишь у нескольких видов силурид и угрей.

    РИСУНОК 6

    Во время вентиляции вода поступает через рот, проходит по ротовой полости и выходит через жаберные щели, проходя между жабрами и наружу через глазничное отверстие (см. Рис. 7). Во время вдоха открывается рот и ротовая полость увеличивается, создавая вакуум, при этом жаберные крышки остаются закрытыми. Когда жаберные крышки открываются, вода течет в одном направлении и выходит. Скелетные мышцы ротовой и глазной полостей поддерживают это перекачивающее действие, выталкивая воду через жабры.Приводящие и отводящие мышцы, расположенные у основания нитей, позволяют их кончикам двигаться вперед и назад. Близость нитей соседних голожаберных жабер заставляет всю воду, которая попадает в ротовую полость и проходит между жабрами, проходить через дыхательную обменную ткань, прежде чем она будет вытеснена. Поток воды почти непрерывен, потому что гидростатическое давление в полости рта выше, чем в полости глазного яблока на всех этапах процесса дыхания. Этот механизм дыхания имеет модификации у рыб с разными привычками, например у видов, которые непрерывно движутся и плавают с открытым ртом, так что вода постоянно поступает пассивно.Вентиляция контролируется рецепторами, которые обнаруживают изменения в потоке воды, давлении CO 2 в жабрах и CO 2 и давлении кислорода в артериях, так что нервная система производит изменения в частоте сердечных сокращений и скорости вентиляции.

    РИСУНОК 7

    Газообмен происходит посредством процесса, называемого противотоком, при котором кровь течет через капилляры в направлении, противоположном направлению потока воды по ламелям. Этот процесс заметно оптимизирует газообмен, который происходит за счет простой диффузии из окружающей среды, где концентрация выше, к той, где концентрация ниже.Кровь с высоким давлением CO 2 и низким давлением O 2 теряет углекислый газ и захватывает кислород из воды. Затем эфферентные сосуды несут богатую кислородом кровь к дорсальной аорте. Поскольку концентрация кислорода в воде низкая, процесс дыхания требует огромных затрат энергии. Недостаток кислорода, растворенного в воде для метаболических потребностей, или поражения респираторного эпителия, которые делают газообмен неэффективным, вызывают респираторную усталость. Хрупкость жаберной ткани плюс постоянное воздействие внешней среды делают жабры уязвимыми органами.Поскольку их функция очень важна, любое поражение, даже небольшое, может повлиять на здоровье рыб. Некоторые из наиболее распространенных макроскопически наблюдаемых изменений в жабрах – это изменения окраски (бледность или потемнение), обильное выделение слизи, ватный рост, узелки, кровотечение и слияние пластинок. Помимо этих анатомических изменений, существуют клинические признаки, которые помогают обнаружить проблемы с дыхательной функцией, такие как затрудненное дыхание и аномальные движения глазных яблок.

    Ошибка разрыва связи

      Приборная панель

      БИОЛОГИЯ-1 (А) -ОСТИН-С2

      Перейти к содержанию

      Приборная панель

      • Авторизоваться

      • Панель приборов

      • Календарь

      • Входящие

      • История

      • Помощь

      Закрывать